Catalogue et commandes en ligne (paiement sécurisé, VISA ou MASTERCARD uniquement)

Revues disponibles par abonnement

Annales scientifiques de l'ENS

Astérisque

Bulletin de la SMF

Mémoires de la SMF

Revue d'Histoire des Mathématiques

Gazette des Mathématiciens

Séries de livres

Astérisque

Cours Spécialisés

Documents Mathématiques

Mémoires de la SMF

Panoramas et Synthèses

Séminaires et Congrès

Série Chaire Jean Morlet

SMF/AMS Texts and Monographs

La Série T

Fascicules « Journée Annuelle »

Autres livres

Donald E. Knuth - traductions françaises

Rééditions du Séminaire Nicolas Bourbaki

Rééditions des Œuvres de Jean Leray

Revue de l'Institut Elie Cartan

Editions électroniques

Annales scientifiques de l'ENS

Bulletin de la SMF

Revue d'Histoire des Mathématiques

Séminaires et Congrès

Plus d'information / Abonnement

Publications grand public

L'explosion des mathématiques (smf.emath.fr)

Mathématiques L'explosion continue (smf.emath.fr)

Zoom sur les métiers des maths (smf.emath.fr)

Zoom sur les métiers des mathématiques et de l'informatique (smf.emath.fr)

Où en sont les mathématiques ?

La Série T

Pour les auteurs

Soumission des manuscrits

Formats et documentation

Plus d'info

Liste de diffusion électronique (smf.emath.fr)

Information pour les libraires et diffuseurs (smf.emath.fr)

Publications de la SMF
fr en
Votre numéro IP : 54.82.57.154
Accès aux édit. élec. : SémCong

Astérisque

Présentation de la publication

Parutions

Dernières parutions

Comité de rédaction / Secrétariat

Année :
Volume :

Faire une recherche


Catalogue & commande

Astérisque - Parutions - 1999 - 258 - pages 77-108

Parutions1999258

Structure Theory of Set Addition
Jean-Marc Deshouillers, Bernard Landreau, Alexander A. Yudin (Ed.)
Astérisque 258 (1999), 458 pages
Acheter l'ouvrage

Structure of sets with small sumset
Yuri Bilu
Astérisque 258 (1999), 77-108

Résumé :
Freiman a démontré qu'un ensemble fini d'entiers K satisfaisant $\vert K+K\vert\leq \sigma \vert K\vert$ est nécessairement un sous-ensemble d'une petite progression arithmétique généralisée de rang m avec $m\le \lfloor \sigma -1\rfloor $. Nous donnons une preuve complète de ce résultat accompagnée de quelques améliorations ainsi que du calcul explicite des constantes impliquées.

Abstract:
Freiman proved that a finite set of integers K satisfying $\vert K+K\vert\leq \sigma \vert K\vert$ is a subset of a ``small'' m-dimensional arithmetical progression, where $m\le \lfloor \sigma -1\rfloor $. We give a complete self-contained exposition of this result, together with some refinements, and explicitly compute the constants involved.

Key words: Addition of finite sets; generalized arithmetical progressions; inverse additive theorems.

Class. math. : 11B25, 11B05.


ISSN : 0303-1179
Publié avec le concours de : Centre National de la Recherche Scientifique