SMF

Le schéma ponctuel de Hilbert : une introduction

The punctual Hilbert scheme : an introduction

José Bertin
Le schéma ponctuel de Hilbert : une introduction
  • Consulter un extrait
  • Année : 2012
  • Tome : 24-I
  • Format : Papier
  • Langue de l'ouvrage :
    Anglais
  • Class. Math. : 13A50, 14C05, 14E15, 14E16
  • Pages : 1-100
L'objectif de ces notes est de proposer une introduction élémentaire et détaillée au schéma de Hilbert ponctuel. Bien que ces schémas constituent des cas particuliers de la théorie générale du schéma de Hilbert de Grothendieck, il est important de les aborder par des méthodes indépendantes, en raison de leurs spécificités, et en prévision des applications. A la suite de la construction dont nous donnons l'essentiel des détails, nous étudions l'occurrence de ces schémas dans diverses applications, motivées par les sujets de l'école d'été : schéma de Hilbert ponctuel du plan, résolutions des singularités A-D-E, correspondance de McKay.
The punctual Hilbert scheme has been known since the early days of algebraic geometry in EGA style. Indeed it is a very particular case of the Grothendieck's Hilbert scheme which ifies the subschemes of projective space. The general Hilbert scheme is a key object in many geometric constructions, especially in moduli problems. The punctual Hilbert scheme which ifies the $0$-dimensional subschemes of fixed degree, roughly finite sets of fat points, while being pathological in most settings, enjoys many interesting properties especially in dimensions at most three. Most interestingly it has been observed in this last decade that the punctual Hilbert scheme, or one of its relatives, the $G$-Hilbert scheme of Ito-Nakamura, is a convenient tool in many hot topics, as singularities of algebraic varieties, e.g McKay correspondence, enumerative geometry versus Gromov-Witten invariants, combinatorics and symmetric polynomials as in Haiman's work, geometric representation theory (the subject of this school) and many others topics. The goal of these lectures is to give a self-contained and elementary study of the foundational aspects around the punctual Hilbert scheme, and then to focus on a selected choice of applications motivated by the subject of the summer school, the punctual Hilbert scheme of the affine plane, and an equivariant version of the punctual Hilbert scheme in connection with the A-D-E singularities. As a consequence of our choice some important aspects are not treated in these notes, mainly the cohomology theory, or Nakajima's theory. for which beautiful surveys are already available in the current litterature [?], [?], [?]. Papers with title something an introduction are often more difficult to read than Lectures on something. One can hope this paper is an exception. I would like to thank M. Brion for discussions and his generous help while preparing these notes.
Régime, schéma de Hilbert, grappe, groupe, action de groupe, factorisation de la matrice, système de quotient, point singulier.
Scheme, Hilbert scheme, cluster, group, group action, matrix factorization, quotient scheme, singular point.