On-line catalogue and orders (secure paiement, VISA or MASTERCARD only)

Journals available by subscription

Annales scientifiques de l'ENS

Astérisque

Bulletin de la SMF

Mémoires de la SMF

Revue d'Histoire des Mathématiques

Gazette des Mathématiciens

Books

Astérisque

Cours Spécialisés

Documents Mathématiques

Mémoires de la SMF

Panoramas et Synthèses

Séminaires et Congrès

Jean Morlet Chair Series

SMF/AMS Texts and Monographs

La Série T

Volumes "Journée Annuelle"

Other Books

Donald E. Knuth - French translations

Nicolas Bourbaki's seminar new edition

Jean Leray's scientific works new edition

Revue de l'Institut Elie Cartan

Electronic Editions

Annales scientifiques de l'ENS

Bulletin de la SMF

Revue d'Histoire des Mathématiques

Séminaires et Congrès

More information / Subscription

Publications for a general public

L'explosion des mathématiques (smf.emath.fr)

Mathématiques L'explosion continue (smf.emath.fr)

Zoom sur les métiers des maths (smf.emath.fr)

Zoom sur les métiers des mathématiques et de l'informatique (smf.emath.fr)

Où en sont les mathématiques ?

La Série T

For the authors

Submission of manuscripts

Formats and documentation

More info

Electronic distribution list (smf.emath.fr)

Information for bookselers and subscription agencies (smf.emath.fr)

Publications de la SMF
fr en
Your IP number: 54.242.115.30
Access to elec. publ.: SémCong

Bulletin de la SMF

Presentation of the publication

Titles

Last Titles

Editorial staff committee / Secretary

Number:

Search


Catalogue & orders

Bulletin de la SMF - Titles - 127 - pages 43-69

Titles127

Recollement de variétés de contact tendues
Vincent Colin
Bulletin de la Société mathématique de France 127, number 1 (1999), 43-69
Buy the book
Download this article : PS file / PDF file

Résumé :
On étudie le comportement des structures de contact tendues vis-à-vis d'opérations de chirurgie le long de disques et de tores. Le résultat principal affirme que lorsqu'on recolle deux variétés de contact tendues de dimension 3 le long de deux tores incompressibles, la variété résultante est tendue pourvu que les structures de départ soient universellement tendues et les tores quasi pré-lagrangiens (c'est par exemple le cas si $\xi $ trace sur les tores considérés un feuilletage en cercles). De plus, on construit un exemple qui montre que sans cette dernière hypothèse, la nouvelle variété peut être vrillée. On combine alors ces techniques de chirurgie et un résultat récent de Y. Eliashberg et W. Thurston pour construire une structure de contact tendue sur « presque » toute variété graphée ainsi que sur une nouvelle classe de sphères d'homologie toroïdales.

Mots clefs : structure de contact, structure tendue, chirurgie, tore incompressible

Abstract:
Gluing tight contact manifolds
We study the behaviour of tight contact structures under surgery operations along disks and tori. The main result says that if one glues two tight contact manifolds along incompressible tori, the resulting manifold is tight provided that the original structures are universally tight and that the tori are quasi pre-lagrangian (for instance it is the case if $\xi $ induces on the tori a foliation by circles). Moreover, we construct an example which shows that without this last assumption, the new manifold can be overtwisted. As an application of these techniques, using a recent theorem of Y. Eliashberg and W. Thurston, we construct a tight contact structure on ``almost'' every graph manifold and on a new class of toroidal homology spheres.


ISSN : 0037-9484
Publié avec le concours de : Centre National de la Recherche Scientifique