On-line catalogue and orders (secure paiement, VISA or MASTERCARD only)

Journals available by subscription

Annales scientifiques de l'ENS

Astérisque

Bulletin de la SMF

Mémoires de la SMF

Revue d'Histoire des Mathématiques

Gazette des Mathématiciens

Books

Astérisque

Cours Spécialisés

Documents Mathématiques

Mémoires de la SMF

Panoramas et Synthèses

Séminaires et Congrès

Jean Morlet Chair Series

SMF/AMS Texts and Monographs

La Série T

Volumes "Journée Annuelle"

Other Books

Donald E. Knuth - French translations

Nicolas Bourbaki's seminar new edition

Jean Leray's scientific works new edition

Revue de l'Institut Elie Cartan

Electronic Editions

Annales scientifiques de l'ENS

Bulletin de la SMF

Revue d'Histoire des Mathématiques

Séminaires et Congrès

More information / Subscription

Publications for a general public

L'explosion des mathématiques (smf.emath.fr)

Mathématiques L'explosion continue (smf.emath.fr)

Zoom sur les métiers des maths (smf.emath.fr)

Zoom sur les métiers des mathématiques et de l'informatique (smf.emath.fr)

Où en sont les mathématiques ?

La Série T

For the authors

Submission of manuscripts

Formats and documentation

More info

Electronic distribution list (smf.emath.fr)

Information for bookselers and subscription agencies (smf.emath.fr)

Publications de la SMF
fr en
Your IP number: 54.242.115.30
Access to elec. publ.: SémCong

Bulletin de la SMF

Presentation of the publication

Titles

Last Titles

Editorial staff committee / Secretary

Number:

Search


Catalogue & orders

Bulletin de la SMF - Titles - 124 - pages 299-327

Titles124

Un théorème de Liouville pour les algèbres de Jordan
Wolfgang Bertram
Bulletin de la Société mathématique de France 124, number 2 (1996), 299-327
Buy the book
Download this article : PS file / PDF file

Résumé :
Un théorème classique de Liouville décrit les transformations conformes d'un espace vectoriel euclidien. Nous généralisons ce théorème aux algèbres de Jordan simples (et non isomorphes à $
\mathbb 
R$ ou $
\mathbb 
C$). La première partie de la preuve est purement algébrique. Nous y montrons que l'algèbre de Lie du groupe de structure d'une algèbre de Jordan simple est de type fini et d'ordre 2. Dans la deuxième partie de la preuve nous en déduisons la description des transformations d'une algèbre de Jordan simple qui sont conformes par rapport au groupe de structure de l'algèbre de Jordan. Elles forment une groupe de Lie de transformations birationnelles qui est connu comme groupe de Kantor-Koecher-Tits, et nous pouvons caractériser ce groupe comme le groupe des transformations conformes de la complétion conforme de l'algèbre de Jordan.

Abstract:
We give a generalization for Jordan algebras of the classical Liouville theorem describing the conformal transformations of a euclidean vector space. In a first step we establish an infinitesimal version which is purely algebraic; namely, we show that the structure Lie algebra of a simple Jordan algebra (not isomorphic to $
\mathbb 
R$ or $
\mathbb 
C$) is of finite order 2. In a second step, using only elementary calculus and Lie theory, we deduce the global version describing the transformations of a simple Jordan algebra which are conformal with respect to the structure group of the Jordan algebra. It turns out that these transformations form a Lie group of birational transformations, also known as the Kantor-Koecher-Tits group, and we can characterize this group as the group of conformal transformations of the conformal closure of the Jordan algebra.

Class. math. : 17 B 70, 17 C 30, 34 A 26, 53 A 30, 53 C 10


ISSN : 0037-9484
Publié avec le concours de : Centre National de la Recherche Scientifique