Catalogue et commandes en ligne (paiement sécurisé, VISA ou MASTERCARD uniquement)

Revues disponibles par abonnement

Annales scientifiques de l'ENS

Astérisque

Bulletin de la SMF

Mémoires de la SMF

Revue d'Histoire des Mathématiques

Gazette des Mathématiciens

Séries de livres

Astérisque

Cours Spécialisés

Documents Mathématiques

Mémoires de la SMF

Panoramas et Synthèses

Séminaires et Congrès

Série Chaire Jean Morlet

SMF/AMS Texts and Monographs

La Série T

Fascicules « Journée Annuelle »

Autres livres

Donald E. Knuth - traductions françaises

Rééditions du Séminaire Nicolas Bourbaki

Rééditions des Œuvres de Jean Leray

Revue de l'Institut Elie Cartan

Editions électroniques

Annales scientifiques de l'ENS

Bulletin de la SMF

Revue d'Histoire des Mathématiques

Séminaires et Congrès

Plus d'information / Abonnement

Publications grand public

L'explosion des mathématiques (smf.emath.fr)

Mathématiques L'explosion continue (smf.emath.fr)

Zoom sur les métiers des maths (smf.emath.fr)

Zoom sur les métiers des mathématiques et de l'informatique (smf.emath.fr)

Où en sont les mathématiques ?

La Série T

Pour les auteurs

Soumission des manuscrits

Formats et documentation

Plus d'info

Liste de diffusion électronique (smf.emath.fr)

Information pour les libraires et diffuseurs (smf.emath.fr)

Publications de la SMF
fr en
Votre numéro IP : 54.198.185.195
Accès aux édit. élec. : SémCong

SMF/AMS Texts and Monographs

Présentation de la publication

Parutions

Dernières parutions

Comité de rédaction / Secrétariat

Volume :

Faire une recherche


Catalogue & commande

SMF/AMS Texts and Monographs - Parutions - 9 (2003)

Parutions

Moduli Spaces of Curves, Mapping Class Groups and Field Theory
Publié en français dans le numéro 7 (1999) de la revue Panoramas et synthèses
Xavier Buff, Jérôme Fehrenbach, Pierre Lochak Leila Schneps and Pierre Vogel
Société Mathématique de France et AmericanMathematical Society
SMF/AMS Texts and Monographs 9 (2003), x+131 pages
(épuisé)

Abstract:
In the book, the authors present applications of moduli spaces of Riemann surfaces in theoretical physics and number theory and on Grothendieck's dessins d'enfants and their generalizations. Chapter 1 gives an introduction to Teichmüller space that is more concise than the popular textbooks, yet contains full proofs of many useful results which are often difficult to find in the literature. This chapter also contains an introduction to moduli spaces of curves, with a detailed description of the genus zero case, and in particular of the part at infinity. Chapter 2 takes up the subject of the genus zero moduli spaces and gives a complete description of their fundamental groupoids, based at tangential base points neighboring the part at infinity; the description relies on an identification of the structure of these groupoids with that of certain canonical subgroupoids of a free braided tensor category. It concludes with a study of the canonical Galois action on the fundamental groupoids, computed using Grothendieck-Teichmüller theory. Finally, Chapter 3 studies strict ribbon categories, which are closely related to braided tensor categories: Here they are used to construct invariants of 3-manifolds which in turn give rise to quantum field theories. The material is suitable for advanced graduate students and researchers interested in algebra, algebraic geometry, number theory, and geometry and topology.

Keywords: Riemann surfaces, Teichmüller spaces, Moduli theory, Class groups, Quantum Field Theory

Class. math. : 32G15, 20F34, 11R32, 20F36


ISSN : 1525-2302