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ABSTRACT. — Mathematicians and historians generally regard the modern period
in algebraic geometry as starting with the work of Kronecker and Hilbert. But the
relevant papers by Hilbert are often regarded as reformulating invariant theory, a much
more algebraic topic, while Kronecker has been presented as the doctrinaire exponent
of finite, arithmetical mathematics. Attention is then focused on the Italian tradition,
leaving the path to Emmy Noether obscure and forgotten.

There was, however, a steady flow of papers responding to the work of both Hilbert
and Kronecker. The Hungarian mathematicians Gyula (Julius) König and József
Kürschák, the French mathematicians Jules Molk and Jacques Hadamard, Emanuel
Lasker and the English school teacher F.S. Macaulay all wrote extensively on the
subject. This work is closely connected to a growing sophistication in the definitions
of rings, fields and related concepts. The shifting emphases of their work shed light
on how algebraic geometry owes much to both its distinguished founders, and how the
balance was struck between algebra and geometry in the period immediately before
Emmy Noether began her work.

RÉSUMÉ. — LA GÉOMÉTRIE ALGÉBRIQUE DE NOETHER À NOETHER —

UN CHAPITRE OUBLIÉ DE L’HISTOIRE DE LA THÉORIE. — Mathématiciens et
historiens considèrent en général que les travaux de Kronecker et de Hilbert inaugurent
la période moderne de la géométrie algébrique. Mais on a souvent envisagé les articles
correspondants de Hilbert comme une reformulation de la théorie des invariants,
sujet de caractère nettement plus algébrique, alors que Kronecker était présenté
comme promoteur doctrinaire d’une mathématique arithmétisée, finie. À partir de là,
l’attention s’est portée sur la tradition italienne, laissant dans l’oubli la voie menant à
Emmy Noether.

Et pourtant, il y eut un flux continu de publications, répondant aux travaux de
Hilbert aussi bien que de Kronecker. Les mathématiciens hongrois Gyula (Julius)
König et József Kürschák, les Français Jules Molk et Jacques Hadamard, Emmanuel
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Lasker et enfin le professeur de lycée anglais F.S. Macaulay, ont tous publié abondam-
ment sur le sujet. Ces travaux sont étroitement liés à une élaboration progressive des
notions d’anneau, de corps, et autres concepts connexes. L’évolution des préoccupations

que manifestent ces publications fait ressortir de combien la géométrie algébrique est
redevable à ses deux éminents fondateurs, et la façon dont se présentaient les rapports
entre algèbre et géométrie dans la période immédiatement antérieure aux débuts de
l’œuvre d’Emmy Noether.

INTRODUCTION

While there has been a considerable amount of historical work done
on many topics in the history of mathematics around 1900, algebraic
geometry continues to evade discussion, perhaps as befits the difficulty
of the subject. It is difficult if not impossible to obtain an adequate
treatment, of reasonable length and sophistication, of many of the key
figures in the period and, as I hope to show here, many of the interesting
and important minor figures have been completely forgotten.

The best literature (Dieudonné [1974], Shafarevich [1974]) rightly tells
a story with Riemann as a vital influence and the theories of Riemann
surfaces and Abelian functions as central topics. This soon divided into
a transcendental enquiry and two algebraic-geometrical ones, one more
algebraic, the other more geometrical. From the transcendental and the
geometrical perspectives, Picard in France, Castelnuovo and Enriques
in Italy are the respective dominant figures at the turn of the 20th
century.1 The algebraic-geometrical aspect was presented most notably
by A. Brill and M. Noether, with extensions by such as Bertini. There
was then an arithmetical theory developed by Hensel and Landsberg.
What is strangely hard to find is accounts of a strand that flourished
at the same time, and which is more visible today in many versions of
what may be called classical algebraic geometry. In this area two major
theorems are associated with David Hilbert: the basis theorem and the
Nullstellensatz (or theorem of the zeros). For a history of these results
one must turn to two classic papers: Hermann Weyl’s obituary of Hilbert,
and van der Waerden’s notes on Hilbert’s geometrical work, published
in the 2nd volume of Hilbert’s Gesammelte Abhandlungen. Dieudonné
suggested, and the simplest scratching around confirms, that one of the
major figures in the creation of an algebraic geometry of n dimensions was

1 See Gray [1989] and Houzel [1991].
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Leopold Kronecker, and he compared Kronecker’s work with the different
but overlapping theories of Dedekind and Weber.

It is hardly surprising that mathematicians had their way with the
history of such a difficult subject for so long, although there is now a
much more comprehensive account by Corry [1996]. Van der Waerden’s
three pages offer a classic account: Hilbert’s many papers are reduced to
two that really matter, the turning point in mathematicians’ interests is
neatly characterised (away from explicit formulae and towards conceptual
clarification). One tradition ends, another gets off to a fine start with
papers by Lasker, Macaulay and, in due course Emmy Noether and her
school. Since these are indeed the origins of the ideas that dominated
the subject for so long, the effect is that of a master telling you all
you need to know. One realises that the past was surely messier, but is
lulled into thinking that the details would make no significant difference.
Weyl’s account confirms this impression. It gives more details of the
work in invariant theory, but ends with the same brief claim that on the
foundations of Hilbert’s work was erected the modern theory of polynomial
ideals (for which we read commutative algebra).

Historians of algebraic geometry have taken their cue from the mathe-
maticians. The subject of invariant theory is notoriously difficult, and one
is understandably reluctant to contest a story that says that Hilbert put
an end to it. The incentive is to treat the topic as background, part of the
pre-history of algebraic geometry and the history of something else (group
representation theory in the manner of Weyl, perhaps). It might seem odd
that Hilbert’s famous theorems arise in such an algebraic setting, but the
whole relationship between commutative algebra and algebraic geome-
try is shrouded in just such ambiguities. Zariski and Samuel called their
famous book Commutative algebra the child of an unborn parent. The
parent, never to be written, was a book on algebraic geometry, which
they called “the main field of applications of, and the principal incentive
for new research in, commutative algebra” [1958, p. v]. The importance of
commutative algebra is only underlined by the more avowedly geometrical
treatise of Hodge and Pedoe, who introduced their third and final volume
by invoking “the needs of those geometers who are anxious to acquire the
new and powerful tools provided by modern algebra, and who also want to
see what they mean in terms of those ideas familiar to them” [1954, p. vii].



4 J. GRAY

It is not part of this paper to take the story up to the present day. But
it should be noted that, if one examines later books on algebraic geometry,
the most important novelties are surely the introduction of cohomology
theories and, after Grothendieck, the language of schemes. In many ways
Grothendieck’s ideas produce the unification of commutative algebra and
algebraic geometry that the mathematicians discussed in this paper seem
to have regarded from afar.

The purpose of this paper is, rather, to explore the various historical
problems that lie hidden behind the tidy histories and mathematical com-
plexities. First, I look in more detail at the historical literature. Then we
examine what Hilbert wrote, and then we consider Kronecker’s contribu-
tion, notably his Grundzüge [1882], and try to see what it contained and
what its influence was. It might seem that anyone who has radical opin-
ions about the meaning of terms like

√
2, let alone π, would be hard to

reconcile with a founding father of higher dimensional geometry. Indeed,
most of Kronecker’s contemporary geometers surely read the Grundzüge,
if they read it at all, as if it referred to polynomials defined over the
complex numbers. On the other hand, a modern mathematician feels that
Kronecker’s theory lacks the tools for dealing in depth with the problems
of algebraic varieties. This raises questions about the response Kronecker’s
work could have elicited, and in pursuing them we shall find ourselves on
a route that does indeed lead from Max to Emmy Noether.

1. SURVEY OF THE EXISTING HISTORICAL LITERATURE

There may not be a large historical literature, but it is still desirable not
to regurgitate large amounts of it. I shall start therefore with Dieudonné’s
account of the two papers that Dedekind and Weber jointly and Kronecker
published in 1882, and with the ideas about divisors that they contain.
Dieudonné characterised these papers as opening up the whole analogy
between algebraic geometry and algebraic number theory, and with intro-
ducing many ideas of abstract algebra that have become central but which
in their day delayed reception of these works. As for Kronecker, Dieudonné
argued [1974, pp. 60–61] that in his Grundzüge he gave precise definitions
of the ideas of an irreducible variety and its dimension. (Dieudonné gave
no precise reference, but the idea of dimension — Stufe — is defined in
the Grundzüge, §10.) In order to give an intrinsic formulation of his ideas,



ALGEBRAIC GEOMETRY BETWEEN NOETHER AND NOETHER 5

Kronecker worked with ideals (which he called Modulsysteme) in polyno-
mial rings; irreducible subvarieties give rise to prime ideals. In refining
these ideas, Lasker [1905] obtained the primary decomposition theorem
which became central in any discussion of the subject.

In Dieudonné’s summary, the paper of Dedekind and Weber [1882] was
directed to the algebraic theory of Riemann surfaces. They started from
the field of functions associated to a Riemann surface, or, rather, from an
algebraic extension of the field C(z) of rational functions in one variable.
They introduced the concept of a discrete valuation (abstracting from the
concrete notion of the zeros and poles of a function on a Riemann surface)
and thus could associate a point set to the original field. Had they been
able to topologise this set they would have been able to complete the
circle and obtain a Riemann surface from a function field. But although
they could not do that, they were able to show that finite sets of points,
which they called polygons or divisors, and suitable equivalence classes
of these, enabled one to recapture the Riemann-Roch theorem in this
abstract setting. They did this by capturing at this abstract level the
relevant properties of meromorphic differentials and of the canonical
divisor, whence they could give a definition of the genus of the function
field.

Dieudonné’s account deals briskly with the first half of the paper where
Dedekind and Weber drew out the analogy between number fields and
function fields. Drawing on the work of their predecessors stretching back
over fifty years, they defined an integer in a function field as an element ω
which satisfies an equation of the form

ωe + b1ω
e−1 + · · ·+ be−1ω + be = 0

where the coefficients b1, . . . , be−1, be are polynomials in z. The integral
elements of a function field form a ring, which they denoted o. Ideals in
this ring are defined, and the standard operations on them introduced,
including divisibility: the ideal b divides the ideal a if and only if a

is a subset of b. A prime ideal is one that is only divisible by itself
and o. Dedekind and Weber showed that every ideal is a product of prime
ideals in a unique way, and that prime ideals correspond to points on the
Riemann surface. At this point they commented, not for the first time,
that the theory of divisibility was much simpler for number fields than
function fields, and that in this matter the analogy broke down.
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The reader of Dedekind and Weber’s paper in Dedekind’s Mathematis-
che Werke will find at the end a one-page note by Emmy Noether, one of
the editors. There she wrote that the missing third part, as she regarded it,
which should have gone from the point set to the topologised surface, was
later supplied by Weyl. The first part, on ideals, she oddly assimilated to
the theory of hypercomplex numbers. The second part, on divisors, she
regarded as taken up by Hensel and Landsberg, followed by Jung and van
der Waerden. Mention of Hensel takes us naturally back to Kronecker,
and so to the alternative formulation. This leads into uncharted waters,
and I shall resume the matter below. Bourbaki [1965] sees the contri-
bution of Dedekind and Weber as a significant step towards giving the
theory of plane algebraic curves a solid basis, and that of Kronecker, in
his Grundzüge, as being more ambitious but also much more vague and
obscure. In contrast to Dieudonné, Bourbaki says that no definition of an
irreducible variety or of dimension can be found in this memoir, although
it was a source of the idea that every variety is the union of irreducible
varieties of various dimensions. This disparity in views may perhaps be
put down to the changing composition of Bourbaki; it would be interesting
to know more about that.

The other major influence in this story is Brill and Noether’s theory
of algebraic curves. This was first proposed in their paper of 1874 as a
way of doing algebraically and rigorously what Clebsch and Gordan [1866]
had earlier tried to do in a way that mixed algebra and analysis: derive
the Riemann-Roch theorem and related results. The rigour of their
achievement, in 1874 and later, was later and rightly questioned, as insight
into the nature of singular points grew, but the theory rests on Noether’s
theorem [Noether 1873]. This asserts, roughly speaking (but incorrectly):
Given two curves with equations f = 0 and g = 0, and a curve h = 0
that passes r+ s−1 times through every point where f has multiplicity r
and g has multiplicity s, then there are polynomials A and B such that
h = Af + Bg, and at those points the curve with equation A = 0 has
multiplicity (s − 1) and the curve with equation B = 0 has multiplicity
(r− 1). Noether’s original expression of this theorem was cast in terms of
power series: If at each singular point of f = 0 and g = 0 a polynomial h
is such that there are power series A′ and B′ such that h = A′f + B′g,
then there are polynomials A and B such that h = Af +Bg.
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The novelty of Noether’s insight was that singular points matter; it
was to be a long time before accurate statements and rigorous proofs
were supplied.2 The version just stated is deliberately over-simple, as the
reader may see by letting f(x, y) = y and g(x, y) = y − x2. The curve
with equation x+ y = 0 is not of the form Af +Bg = 0. What is missing
is a statement about the curve h = 0 passing through the origin and
having a common tangent there with the curves f and g. For example,
that h = 0 passes k times through each k-fold intersection point of f = 0
and g = 0, or, in more traditional language, that infinitely near points
are taken into consideration. This is not the occasion to enter into details.
Notice, instead, that the condition on the singular points can be dropped,
but then some power of h may be required. This is the geometrical reason
for the appearance of powers in the Nullstellensatz.

2. HILBERT

It is time to confront the work of Hilbert. The relevant papers occupy
about 300 pages of the second volume of his Gesammelte Abhandlungen;
for English readers the easiest place to start may be an edition of
his lecture notes of 1897 [Hilbert 1897/1993] and their useful modern
introduction by B. Sturmfels. Until recently, one had to lament the lack of
an adequate historical literature; Reid’s biography [1970] helps, but it is
hardly detailed enough. The situation has changed for the better with the
appearance of Corry [1996] , which discusses Hilbert’s work in the context
of the rise of structural algebra. The account here is necessarily briefer,
and emphasises the geometrical side of Hilbert’s work.

The Hilbert basis theorem for forms in any number of variables was
stated for the first time in “Zur Theorie der algebraischen Gebilde, I”
[Hilbert 1888]) and it was then used in the next two papers in that series
before being proved in the first of the papers singled out by van der
Waerden “Über die Theorie der algebraischen Formen” [Hilbert 1890].
The reason for placing the proof last may have been the wider circulation
of the later paper, published as it was in the Mathematische Annalen
rather than the Göttinger Nachrichten, coupled with a natural desire to

2 I hope to tell this story elsewhere soon; for now the reader may consult the extensive
discussion in Brill and Noether [1894, pp. 367–402] and Bliss [1923].
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use such a powerful result. The choice of the terms Gebilde (varieties) and
Formen (forms) may also have been motivated by the more geometrical
spirit of the former, shorter, papers and the more algebraic, technical
nature of the proof, but it is clear from everything Hilbert wrote that he
thought it at most a small step from geometry to algebra and back. The
first statement of the theorem runs as follows:

“Let ϕ1, ϕ2, ϕ3, . . . be an infinite sequence of forms in n variables
x1, x2, . . . , xn, then there is always a number m such that every form in
that series can be written in the form ϕ = α1ϕ1+α2ϕ2+· · ·+αmϕm, where
α1, α2, . . . , αm are appropriate forms in the variables x1, x2, . . . , xn.”3

The use of the term “sequence” is unfamiliar to our eyes, but the language
of sets was not widely used in 1888, and the idea of a sequence permits
Hilbert to saying that the first so many terms form the finite basis.

The first of these four papers is a rich one, broaching the theory
of syzygies, and asking for the generalisation of Noether’s theorem to
arbitrary dimensions, which seems to have been an early ambition of
Hilbert’s. The second paper shows how to use the basis theorem to
illuminate the ideas of dimension, genus, order, and rank of an algebraic
variety, and so makes explicit contact with Kronecker’s work. Setting the
third paper on Gebilde aside, we come to the famous paper in which the
basis theorem is proved. I do not wish to discuss the proof, but to point out
the geometrical applications and illustrations to surfaces passing through
a twisted cubic curve, and to multiple points on a variety. Only the final
section of the paper is specifically addressed to the theory of algebraic
invariants.

In 1893 Hilbert returned to the subject with a series of new ideas
that occupy the second paper selected by van der Waerden, “Über die
vollen Invariantsysteme” [Hilbert 1893]. The aim, as Weyl pointed out,
is to indicate a way in which all the invariants associated to a given
form can be obtained. Although this remained the aim of some authors
(see, for example, Study [1923]), others were happy to give up. Study
himself quoted one, unnamed, source saying of Hilbert’s work: “Good,

3 “Ist ϕ1, ϕ2, ϕ3, . . . eine unendlichen Reihe von Formen der n Veränderlichen
x1, x2, . . . , xn, so gibt es stets eine Zahl m von der Art, daß eine jede Form jener Reihe
sich in die Gestalt ϕ = α1ϕ1 + α2ϕ2 + · · · + αmϕm bringen läßt, wo α1, α2, . . . , αm

geeignete Formen der n Veränderlichen x1, x2, . . . , xn sind” [Hilbert 1888, p. 176].
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now we won’t have to bother with invariant theory any more.”4 However,
it was not easy to convert Hilbert’s ideas into an algorithm; this was
only done recently (see Sturmfels in [Hilbert 1897/1993]). The conceptual
clarity, which is striking, contrasted with the unresolved computational
difficulties, lie at the basis of the claims of van der Waerden and Weyl
that Hilbert’s ideas were ultimately responsible for the growth of modern
abstract algebra in the 1930s. While this is partly true, the 40 year gap
between cause and effect makes one want to examine the intervening
period. Some indications of the vigour of the algorithmic tradition are
clearer among those influenced by Kronecker, and are described below.
There is surely an element of tradition-making going on, which some
have not been so ready to adopt. Indeed, Jacobson (cited in [Corry 1996,
p. 146]) suggested that classical invariant theory only disappeared from
the textbooks after 1930 with the publication of van der Waerden’s
Moderne Algebra.

Hilbert drew particular attention to forms all of whose invariants
vanish; such forms are called nullforms. For a binary quadratic form
ax2 + bxy + cy2, the only invariant is b2 − 4ac, the vanishing of which
is the condition for repeated points (the equation ax2 + bxy + cy2 = 0
here defines points on the projective line). The same is true of binary
cubic forms. By the basis theorem, all invariants will vanish if some finite
set of forms vanish. Hilbert proved the important converse to this result: if
a form is such that there is a set I1, . . . , Iµ of invariants with the property
that the vanishing of the I1, . . . , Iµ, implies that every invariant of the
form vanishes , then all the invariants of the base form are polynomials
in the I1, . . . , Iµ.

To prove this result, Hilbert introduced his Nullstellensatz, which he
stated in substantially this form in his paper [1893, p. 294], where it was
also proved, and in his lectures [Hilbert 1897/1993, p. 142]):

Given m homogeneous polynomials f1, f2, . . . , fm in n variables x1,

x2, . . . , xn, and a sequence F1, F2, . . . of homogeneous polynomials in those
variables which vanish for all the values of the variables for which the m
given polynomials f1, f2, . . . , fm vanish, then one can find an r such that
any product of r terms from the sequence F1, F2, . . . can be expressed in

4 “Wie schön, daß man sich nun nicht mehr mit Invarianten zu befassen braucht”
[Study 1923, p. 5].
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the form a1f1+a2f2+· · ·+amfm, where the a1, a2, . . . , am are appropriate
polynomials in the n variables x1, x2, . . . , xn.

Hilbert’s treatment was confined to the case where the ground field is
the complex numbers. In modern terms, over an arbitrary algebraically
closed ground field, this runs: Let a be an ideal in a polynomial ring,
and f a polynomial that vanishes at all the points where the elements of a

vanish, then f r ∈ a for some positive integer r [Atiyah and MacDonald
1969, p. 85]. As Hilbert himself said in his lectures:

“The proof of this theorem is very cumbersome, and it would lead us too
far afield to discuss a proof here. But we would like to briefly demonstrate
its significance through two examples ” [Hilbert 1897/1993, p. 142].

The first example concerns m binary forms, the second two algebraic
curves defined by ternary forms f1 and f2 of orders α and β respectively
and meeting in αβ distinct points. The theorem states that the equation
of any curve that passes through these αβ points can be written in the
form a1f1+a2f2 = 0. This is, as Hilbert noted, a simple case of Noether’s
AF +BG theorem, albeit one that Noether regarded as unproblematic.

Hilbert then went on to prove the converse mentioned above and
apply it to give short, elegant accounts of the full system of syzygies
for invariants and covariants in many low-dimensional cases. He then
considered canonical forms for the nullforms (those for which as many
coefficients as possible were zero) and showed that these could be written
down explicitly. In his Lectures [Hilbert 1897/1993] he described what
happens in complete detail in geometrical terms for forms of degree less
than 6. For example, a curve defined by a quadratic equation all of
whose invariants vanish is a product of two lines, and for cubic curves
(defined by cubic ternary forms) all invariants vanish if and only if the
curve has a cusp. As a further demonstration of the power of this theory,
Hilbert showed how to use it to obtain all the classical results about the
configuration of nine inflection points on a generic cubic curve, as well as
how to find the coordinates of the points and of the lines through triples
of them.

Hilbert’s basis theorem and Nullstellensatz are both of immediate
geometric import. Indeed, Klein said of the work of Hilbert that it “began
a new epoch in the history of algebraic geometry ”.5 We shall now see how

5 “Eben darum leitet diese Arbeit von Hilbert eine neue Epoche in der algebraischen
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they give geometrical meaning to results of Kronecker that were offered
in quite another spirit.

3. KRONECKER

Kronecker’s Grundzüge has a justified reputation for difficulty. Even a
work like [Edwards 1990], closely as it sticks to the spirit of Kronecker’s
endeavour, does not set out to do justice to the size and scope of
that enterprise. The problem is compounded by Kronecker’s notoriously
difficult style; it is easy to get lost in the march of detail. Edwards
comments that “Kronecker’s theory . . . did not win wide acceptance. The
presentation is difficult to follow, and the development leaves gaps that
even a reader as knowledgeable as Dedekind found hard to fill” [Edwards
1980, p. 355]. Even Hermann Weyl, who in this matter is a friend of
Kronecker’s, had to admit that “Kronecker’s approach . . . has recently
been completely neglected” [Weyl 1940, p. iii]. Finally, there is the conscious
philosophy that comes with the school and cannot fairly be cut from it.
The paradigm for all who worked in this tradition is not algebra but
arithmetic, and it will be worth attending carefully to what they meant
by that. There is real excitement for the historian here, and we can get a
sense of it by attending to the sheer ambition of his project, and why it
held arithmetic in such high regard.

It might be best to try and set aside what one thinks one knows
about Kronecker’s philosophy of mathematics. This is usually expressed
in negative terms: his factorisation theory eschewed Dedekind-style naive
set theory and could therefore happily announce that some number was
divisible without having an object that represented its divisors (Dedekind
was appalled by this); Kronecker was a strict finitist with no place for
transcendental numbers, even, on some views, algebraic numbers. Thus
Felix Klein said of Kronecker that “he worked principally with arithmetic
and algebra, which he raised in later years to a definite intellectual norm
for all mathematical work”6 and: “With Kronecker, who for philosophical
reasons recognised the existence of only the integers or at most the

Geometrie ein” [Klein 1926, p. 330].

6 “Indem er sich vorwiegend mit Arithmetik und Algebra beschäftigte, in späteren
Jahren aber bestimmte intellektuelle Normen für alles mathematische Arbeiten auf-
stellte . . . ” [Klein 1926, p. 281].
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rational numbers, and wished to banish the irrational numbers entirely,
a new direction in mathematics arose that found the foundations of
Weierstrassian function theory unsatisfactory.”7 He then alluded briefly
to what has become one of the best-known feuds in mathematics, the last
years of Kronecker and Weierstrass at Berlin, offered his own wisdom as
an old man on these matters, and observed that although Kronecker’s
philosophy has always attracted adherents it never did displace the
Weierstrassian point of view. Finally he quoted with approval Poincaré’s
judgement that Kronecker’s greatest influence lies in number theory and
algebra but his philosophical teaching have temporarily been forgotten.

The matter is, as so often, better put positively. The first thing is
the enormous range of the project. This was emphasised by his former
student Eugen Netto when he surveyed Kronecker’s work for an American
audience, on the occasion of the World’s Columbian Exposition in Chicago
in 1893, two years after Kronecker’s death [Netto 1896]. Netto quoted
Kronecker as having said that he had thought more in his life about
philosophy than mathematics, and that the expression of his philosophical
views was to be found in his ideas about arithmetic. So far as possible,
Kronecker wanted a common method for dealing with all the problems of
mathematics that come down to properties of polynomials in any finite
number of variables over some field, usually the rational numbers. In the
strict sense in which Kronecker intended to be understood, the ground
field is at most an algebraic extension of a pure transcendental extension
of finite transcendence degree of the rationals.

We shall see that there were those, like Molk, who accepted this starting
point, and others, like König, who preferred to start with the complex
numbers. So Kronecker’s subject matter included all of algebraic number
theory, and, geometrically interpreted, the theory of algebraic curves and,
insofar as it existed, the theory of algebraic varieties of any dimension.
This is why he occupies what might otherwise seem an unexpected place
in the history of early modern algebraic geometry. The fact that the
ground field is not the complex numbers, nor even algebraically closed,

7 “Mit Kronecker, der auf Grund philosophischer Betrachtungen nur den ganzen,
höchstens noch den rationalen Zahlen wirkliche Existenz zuerkannte, die irrationalen
Zahlen aber ganz und gar verbannt wissen wollte, entstand eine neue Richtung in der
Mathematik, welche die Grundlagen der Weierstraßschen Funktionentheorie nicht als
befriedigend ansehen wollte” [Klein 1926, p. 284].
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need not be an insuperable problem: a great deal of algebraic geometry
can still be done by passing, if need be, to successive algebraic extensions.
What Kronecker could not do, according to his lights, is pass to the full
algebraic closure of the rational field. While this would not necessarily be
a significant mathematical problem for any one drawn to this approach,
the historian cannot escape so easily, however, as we shall see when we
discuss the limited references Kronecker actually made to geometry.

The analogy between these algebra and arithmetic, which will be
discussed a little below, is a real one, and by refining the question they
share of finding common factors Kronecker sought to exploit to the benefit
of all the various aspects. It is the analogy with algebraic number theory
that drove him to call his theory arithmetic, rather than merely algebraic.
The basic building blocks were two things: the usual integers and the
rational numbers, on the one hand, and variables on the other. These were
combined according to the usual four laws of arithmetic; root extraction
was to be avoided in favour of equations (for example, the variable x and
the equation x2 − 2 = 0, rather than

√
2 ).

Kronecker on discriminants

Kronecker himself set out the thinking that led him to his general
programme in a fascinating preface to a paper “Über die Discriminante
algebraischer Functionen einer Variabeln” [Kronecker 1881]. The preface
is a lengthy historical account indicating how much he had already
proposed in lectures at the University of Berlin (and who his audience had
included) and at a session of the Berlin Academy in 1862. The guiding
aim, which he traced back to 1857 (the date, one notices of Riemann’s
paper on Abelian functions) was to treat integral algebraic numbers (for
which the modern term is algebraic integers). These he defined as roots
of polynomial equations with leading term 1 and integer coefficients. He
encountered certain difficulties, which is where the discriminants come in.
The resolution of these problems came with the insight that it was a
useless, even harmful restriction to consider the rational functions of a
quantity x that satisfies an algebraic equation of degree n only in the form
of polynomials in x (i.e. as linear homogeneous functions of 1, x, . . . , xn−1).
It would be better, he realised, to treat them as linear homogeneous forms
in any n linearly independent functions of x. This made it possible to
represent complex numbers by forms, in which every algebraic integer
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appeared as an integer while circumventing the difficulties. The insight
may be put another way: an irreducible polynomial of degree n with
distinct roots defined n quantities at once, and it can be shown that it
cannot share a subset of these roots with any other irreducible polynomial.
By picking on one root, problems arise that can be avoided by treating
all the roots simultaneously.8 (If you like, study ±

√
2, but not just

√
2 .)

He discussed these results with Weierstrass, who was his friend at the
time, and Weierstrass urged him to apply the same principles to algebraic
functions of a single variable and if possible to the study of integrals of
algebraic functions, taking account of all possible singularities. This set
him on the road to a purely algebraic treatment, shunning geometric or
analytic methods. He sent the first fruits to Weierstrass in October 1858,
but Weierstrass’s own results rendered his superfluous in his own eyes and
so he refrained from further publication. Kronecker was brought back to
the topic by discovering how much his thoughts coincided with those of
Dedekind and Weber (an agreement which did not, he noted, extend to
the basic definition and explanation of the concept of a divisor). Therefore
he presented his old ideas, abandoned in 1862, for publication in 1881.

Kronecker’s Grundzüge

Kronecker’s Grundzüge is a lengthy work, and an unrelenting one.
Happily, I may invite readers consult Edwards [1990] for a thorough
mathematical commentary, where they will learn amongst other things
of the unproven claims Kronecker made. This mixture of great claims
for the rigour and immediacy of the theory and the absence of proofs
at crucial points that surely contributed to the work’s poor reception.
Dedekind’s rival version, attacked by Kronecker for its abstraction, was
not so embarrassed. Kronecker does not seem to have had the knack of
conveying in print what was known, what can be done, and what might
be discovered in a way that would drive future research.

Kronecker’sGrundzüge is about objects which are so common in math-
ematics that it is hard to know what to call them. They are polynomi-
als in several variables and their quotients by other such polynomials. A
collection of rational functions in some (finite set of) indeterminates Ri

8 Netto [1896, p. 247] observed that Kronecker’s factorisation theory depended on being
able to work with all of a set of conjugate algebraic numbers at once, in order to use
Galois theory.
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closed under the four operations of arithmetic Kronecker called a Ratio-

nalitätsbereich, which I translate as domain of rationality. A ganze or

integral function in a domain is a polynomial in the R’s. The old name

of “rational functions” (which Kronecker used) survives, although they

are not thought of as functions but expressions. The coefficients may be

integers, rational numbers, or elements of some field (another term we

shall have to return to). The crucial thing about these objects is that

they can be added, subtracted, multiplied, and divided (of course, one

cannot divide by zero). Kronecker also insisted that there was no ques-

tion of order here, such expressions are not greater or less than others

(which rules out use of anything like the Euclidean algorithm). He also

explicitly wished to avoid geometrical language.

Kronecker’sGrundzüge places three obstacles in the way of comprehen-

sion. One is the number of unproven claims that are made. Another is the

style, which mixes up what is proved with unproven claims about what is

true. The third is the delicate, and often heavily computational nature of

the material. Each of these difficulties calls for comment. The existence of

unproven claims is not necessarily a barrier to the acceptance of a work;

it may function as a challenge to later workers. However, the failure to

meet these challenges, coupled with the opportunity of switching to a rival

theory that did not have these disadvantages, was to prove crucial in the

demise of Kronecker’s approach. As for the style, unexpected though it

may be in a mathematician with a strong axe to grind about what is

the right way to do mathematics, it is typical of the period. Long papers

and books were designed to be read; they were seldom presented in the

style of definition, theorem, proof that came in later, with Landau. It is

tempting to imagine that it was the obstacles presented by such works

as Kronecker’s Grundzüge that pushed Landau to accentuate the division

between mathematics and literature. It is also noticeable that Hilbert’s

writings were much more lucid and carefully structured so that they could

be easily understood. The final obstacle would be a virtue if the com-
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putational machine gave acceptable answers. The problem seems to have
been that it did not.

Edwards’ analysis of Kronecker’s theory praises it for being based on
the idea of divisors, and in particular the idea of greatest common divisors
(when they exist). The greatest common divisor of two elements of a field
is, Edwards points out [1990, p. v], independent of the field: if two objects
have a third as their greatest common divisor this third object remains
their greatest common divisor even if the field is extended. This is not the
case of prime elements: an element may be prime in one field but factorise
in an extension of that field.9 Kronecker claimed to have a method for
factorising a given divisor as a product of prime divisors. His successor
Hensel gave proof that this method works in the context of algebraic
number fields, and echoed Kronecker’s claim that the method worked in
general. But he never gave such a proof, and Edwards wrote in 1990 that
he did not know of one.

Edwards makes light, however, of what seemed to every one at the time
to be an immediate problem with divisor theory: there simply may not be
a greatest common divisor of two elements. Rings and fields with greatest
common divisors include all the so-called “natural domains”; these are
the domains which are either the rational numbers or pure transcendental
extensions of the rational numbers. They are to be contrasted with
algebraic number fields, which typically do not have greatest common
divisors. All writers (Kronecker, Molk, König) give the same example, due
originally to Dedekind, because it is the simplest: algebraic integers of the
form m+ n

√
−5. It is easy to show that 2−

√
−5 is irreducible, but it is

not prime. Indeed, (2−
√
−5 )(2+

√
−5 ) = 9 = 3×3, but 2−

√
−5 does not

divide 3 (the solutions, x and y, of the equation (2−
√
−5)(x+y

√
−5) = 3

are not integers). So the algebraic integers 9 and 3× (2−
√
−5 ) have no

greatest common divisor: their common divisors are 1, 3 and 2−
√
−5, but

neither of 3 and 2 −
√
−5 divides the other. It was exactly this problem

that caused Dedekind to formulate his theory of ideals, which invokes
ideals that are not principal (generated by a single element) precisely

9 The theory of factorisation takes place in rings, usually rings of integers in some field.
When this field is extended, the ring of integers may be enlarged. This process has no
effect on greatest common divisors, but it may produce factors of previously prime
elements of the initial ring. Edwards’ use of the term “field” is typical of Kronecker’s
day.
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to the get round the problem. In König’s terminology, rings and fields
having greatest common divisors are called complete, those like Q(

√
−5)

are incomplete. In the Kroneckerian approach the whole analysis grinds
to a halt with incomplete domains. Netto [1896, p. 252] observed that
finding irreducible factors was an open question once the existence of
greatest common divisors failed.

In this paper, which is devoted to the history of some ideas in algebraic
geometry, it might be possible to set problems with algebraic number
fields on one side. It was generally agreed throughout this period that
in geometry the subject matter was polynomials in a certain number of
indeterminates and whose coefficients were complex numbers. The field
of complex numbers is a natural one, and so the difficulty with greatest
common divisors does not arise. But before this problem can be set aside,
we must at least notice that doing so violates Kronecker’s philosophy.
Whatever his motivation might be, his Grundzüge is a non-geometrical
work. In reading it for its geometrical meaning and seeking to connect it
to contemporary geometry, mathematicians were reading it against the
grain. They had first to jump from the kind of fields that Kronecker was
prepared to contemplate to the complex numbers; when writing in the
spirit of his Grundzüge, Kronecker did not recognise that there was such
an object as the field of all complex numbers. Then mathematicians had to
turn their back on the unity that Kronecker was trying to forge: a coherent
domain of objects studied (he hoped) by uniform methods.

Kronecker’s most powerful influence was exerted on the handful of
students around him at any time in Berlin. For that reason it is worthwhile
looking at the posthumous volume of his Lectures [Kronecker 1901], edited
by Hensel. This was largely based on his lectures in the 1880s, but they
have the advantage over the Grundzüge of being both more elementary,
clearer about what has been proved, and more geometric. It may be
the case that the lectures were more influential that the Grundzüge,
or at least that the combination of lectures and conversation was more
potent (Kronecker was a sociable mathematician, see [Biermann 1973]).
Best known among his followers are Hensel (who knew him personally,
succeeded him at Berlin, and edited a volume of Kronecker’s Vorlesungen
über Zahlentheorie in 1901) and Landsberg. Another was Eugen Netto,
whose two-volume Algebra [1896–1900] is his account of ideas in the
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Grundzüge. Based on his two years of study in Berlin, Molk wrote his
account of those ideas as his doctoral thesis and as an article in Acta
mathematica [1885]. Slightly less readable, in English or French, are the
presentations of the American mathematician Harris Hancock, who heard
the last lecture course Kronecker gave, and subsequently published his
version as part of his thesis (see [Hancock 1902]). His interminable book
[1931–1932] is an extended comparison of the approaches of Dedekind and
Weber and Kronecker.10

Kronecker’s lectures

In his Vorlesungen über Zahlentheorie [1901, Lecture 13] Kronecker
defined a domain of rationality determined by an indeterminate R as
the totality of all products and quotients of polynomials in R (division
by 0 being excluded). He denoted it (R) — we would write it as Q(R).
He showed that it consisted precisely of all rational functions of R with
integer coefficients. If division was not allowed, a subdomain of (R) was
constructed which he called a domain of integrity (Integritätsbereich) and
denoted [R] — we would write it as Z[R]. Kronecker observed that if in
particular the indeterminate R is set equal to 1, then (R) = (1) is the
usual rational numbers, and [R] is the integers. The same construction
can also be carried out with finitely many indeterminates.

Divisibility in any domain of integrity had the natural meaning that m
divides a if and only if there is an integer c in the domain such that
a = cm. Kronecker chose to write this in the formalism of congruences
to a modulus, and therefore spoke of modular systems (Modulsysteme).
When a = cm he said that a was contained in the modular system (m),
and more generally he said that a form a was contained in a modu-
lar system (m1,m2, . . . ,mr) or was divisible by the modular system if
a = c1m1 + c2m2 + · · ·+ crmr, for some integers c1, c2, . . . , cr. He said
that two modular systems were equivalent if each was contained in the
other.

He then turned to divisors. The greatest common divisor of the

10 In all of this activity there are some curious, even unexpected, allegiances. One
might have expected Hensel and Landsberg’s book to be dedicated to Kronecker, but
in fact their book is dedicated to Dedekind. Likewise one might guess that Heinrich
Weber’s book on algebra would be in Dedekind’s style, and so it is, but it was regularly
and rightly cited in its day for its thorough account of Kronecker’s approach.
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modular systems (m1,m2, . . . ,mr) and (n1, n2, . . . , ns) was, he showed,
the modular system (m1,m2, . . . ,mr, n1, n2, . . . , ns), and the composition
of two modular systems (m1,m2, . . . ,mr) and (n1, n2, . . . , ns) was, he also
showed, the modular system (minj ; 1 ≤ i ≤ r, 1 ≤ j ≤ s). This was later
called the product of the two modular systems.

In Lecture 14, Kronecker restricted his attention to polynomials in a
single variable and integer coefficients. In this domain a generalisation
of the Euclidean algorithm permitted him to find the greatest common
divisor of two polynomials, as follows. Given f1(x) and f2(x), with f1(x)
of higher degree than f2(x), one can write

f1 = q(x)f2 + r(x),

where the degree of r(x) is less than that of f2, but it is not certain
that the coefficients of q(x) and r(x) will be integers. By following this
complication through, Kronecker deduced that: If f1(x) and f2(x) are
polynomials with integer coefficients, then by successive division one can
find a third polynomial fn(x) with integer coefficients and two integers s1
and s2 such that fn(x) ≡ 0 (mod f1(x), f2(x)) and s1f1(x) ≡ s2f2(x) ≡ 0
(mod fn(x)). The polynomial is the greatest common divisor of f1(x)
and f2(x) if and only if s1 = s2 = 1.

Divisor or modular systems (f1(x), . . . , fn(x)) that are equivalent to
a system with just one element (f(x)) he called modular systems of the
first level or rank, all others of the second level. An example of the first
kind was (3x − 3, x2 − 1, x2 + x − 2); of the second kind (m,x − n),
where m > 1. A modular system was said to be pure if the defining
terms have no common factor, otherwise mixed. So (3, x− 1) is pure, and
(3(x2+1), (x−1)(x2+1)) is mixed. To use Dedekind’s language harmlessly
here, an element of a domain of integrity belonged to a modular system
if it was in the ideal the modular system generated.

Pure divisor systems of the first level lead to the study of polynomials
with integer coefficients and their irreducible factors. In Lecture 15, Kro-
necker proved the unique decomposition theorem in this context. Let the
given polynomial be

F (x) = c0 + c1x+ · · ·+ cnx
n.

The Euclidean algorithm finds the greatest common divisor of the coeffi-
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cients, m say. Factoring it out leads to the polynomial with integer coef-
ficients

f(x) = a0 + a1x+ · · ·+ anx
n.

The possible degrees of any factor of f(x) can be found easily, but
finding the coefficients of any factor would be harder. Kronecker offered
an argument based on the Lagrange interpolation formula to show how
one could find out if f(x) had a divisor of any given degree µ, and to
determine the coefficients of the divisor if it exists, in a finite number
of steps. This insistence on exhibiting a finite process is characteristic of
Kronecker.

He then defined a prime function as an integer or a polynomial that
is not divisible by any other in the domain, and proved that if a product
φ(x)ψ(x) is divisible by a prime function P (x) then at least one of φ(x)
and ψ(x) is so divisible. Finally he showed that a polynomial with integer
coefficients can be written in essentially one way as a product of prime
functions.

In Lecture 20 he broached the generalisation to modular systems in
more than one variable, without going into the proofs in detail. He
showed that an integral quantity F (x, y) can be factored uniquely into
irreducible or prime functions, by treating it as a polynomial in y with
coefficients that are polynomials in x. Kronecker now admitted what he
called arbitrary, not merely integral coefficients (it is not clear this means
complex numbers!) so every element in the domain of integrity {x, y}
therefore corresponds to an algebraic equation F (x, y) = 0 and so to an
algebraic curve. Similarly, the elements in the domain of integrity {x, y, z}
correspond to algebraic surfaces.11

Kronecker considered the equations divisible by the modular system
(f1(x, y), . . . , fn(x, y)) in {x, y}, and showed that they corresponded to
curves through the common points of the curves corresponding to the
equations f1(x, y) = 0, . . . , fn(x, y) = 0. Such points he called the
fundamental or base points of the system. Two modular systems are
equivalent if they generate the same ideal; for this to happen in {x, y}
it is necessary but not sufficient that they have the same base points;

11 Kronecker or his editors denoted a domain here by parentheses { }, and in his
Grundzüge by brackets [ ].
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he gave the example of (x2, y) and (x, y2), which are not equivalent but
have the same base point (the coordinate origin (0, 0)). Similar if vaguer
remarks followed about {x, y, z}.

The defining elements of a modular system in two variables may have
a common curve and also meet in isolated points. If there are no such
isolated points, Kronecker called the system is pure, otherwise mixed.

If the elements of a modular system are polynomials in several variables
with integer coefficients, then whether the domain is [x, y, z] or {x, y, z}
matters. Rather than recapitulate Kronecker’s definitions, here is one
of his examples. In the domain {x, y, z} (with arbitrary coefficients) a
quantity f(x, y, z) is a prime divisor of the first level if and only if it is
irreducible, and so the equation f(x, y, z) = 0 defines an indecomposable
algebraic surface F in 3-dimensional space. If g(x, y, z) is another integral
quantity from the same domain and G the corresponding surface, then
either g is divisible by f , or (f, g) is a modular system of the second level.
In the first case, the surface F is part of the surface G. In the second case
the modular system (f, g) corresponds to the complete intersection of the
two surfaces F and G, and therefore to a space curve C. In this latter
case, if the modular system is a prime modular system then the curve is
irreducible.

If a third quantity h = h(x, y, z) is taken in {x, y, z} then either h
is divisible by the prime modular system (f, g) or the modular system
(f, g, h) is of the third level, and the three surfaces F , G, and H have
only isolated points in common. Whence the theorem: an irreducible
space curve and an algebraic surface either have a finite number of
common points, or else the curve lies completely in the surface. Similar
considerations allowed Kronecker to give what he called a complete
overview of the geometrical interpretation of the purely arithmetical
idea of a prime divisor: divisors of the first, second and third kinds in
the domain {x, y, z} correspond to algebraic surfaces, algebraic curves,
and points; prime divisors of these kinds correspond to indecomposable
surfaces, irreducible space curves, and isolated points.

The Grundzüge goes over the ground of the Vorlesungen, in a more
visionary way. As far as geometry is concerned, he noted (§21) that
there was a connection with the theory of hypercomplex numbers. When
three variables are taken as coordinates of space, divisors of the first level
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(Stufe) are either numbers or polynomials in x, y, z, the vanishing of which
represents a surface. Modular systems of the second level represent either
a number or a curve, of the third level, sets of points. A modular system
of level n was defined by Kronecker to be of the principal class if it was
defined by n elements. So, in the principal class of each divisor system
of the second level are those curves which are the complete intersection
of two surfaces. Kronecker commented that this, surprisingly, is a higher
viewpoint from which the representation of integers as norms of complex
numbers and the isolated representation of geometric figures are seen to
be intimately related.12

4. UNCHARTED WATERS

Let us now look at the work of those who took up Kronecker’s ideas. An
influential, if perhaps unexpected, follower was Jules Molk, who studied
in Berlin from 1882–1884, where he was drawn above all to the teaching
of Kronecker. On his return to Paris he took his Doctorat ès sciences at
the Sorbonne in 1884; we may read this thesis, lightly revised, in Acta
mathematica [Molk 1885]. It is a summary, with a few simplifications,
of Kronecker’s ideas, coupled with strongly worded claims for its merits;
Netto [1896, p. 247] called it a very thorough and well arranged presenta-
tion (sehr eingehende und übersichtliche Darstellung). Some years later,
Molk arranged for an extensive reworking of Lansdberg’s article on divi-
sor theory in the Encyklopädie der mathematischen Wissenschaften for the
French Encyclopédie des sciences mathématiques pures et appliquées, of
which Molk was editor-in-chief. The authors of that article were Kürschák
and Hadamard. In 1903 and 1904 the Hungarian mathematician Gyula
König wrote the first textbook on the subject (first in Hungarian and
then in German); in Molk and König we have two valuable guides to the
Grundzüge, with the essays by Landsberg and by Hadamard and Kürschák
to take us further. A paper and a book by the English mathematician
F.S. Macaulay bring this journey to an end.

5. MOLK

In his long paper of 1885, Molk distinguished between natural and

12 The point was echoed almost verbatim by Netto [1896, p. 249].
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general domains of rationality. In the general domain there may be
algebraic relations between the indeterminates. Having shown that there
was a good theory of divisibility in the natural case, he set about
decomposing integral quantities in a general domain. As he put it, he
wished to show both the important role played in modern research by
algebraic functions, and the great simplifications which their use allows,
and also,

“la méthode à suivre pour éviter précisément l’emploi de ces fonctions.
La complication de cette méthode n’est qu’apparente et ne porte que sur
le mécanisme de la démonstration; loin de rendre la démonstration elle-
même plus difficile, elle nous fait, au contraire, apercevoir plus clairement
le lien entre les hypothèses que nous faisons et le résultat qui en découle,
entre notre point de départ et notre point d’arrivée; et seule, elle mérite
le nom de méthode algébrique, car, seule, elle se meut dans le domaine
particulier à l’algèbre” [Molk 1885, p. 65].

Given the elements of a domain (which I shall denote D) formed from
the indeterminates R1, . . . , Rn that are related by an irreducible algebraic
equation Ψ = 0, the problem is to decompose a polynomial F (z) with
coefficients in the domain D into factors. To do this, Molk first found the
resultant, which he called S, of the functions F (z+tR1) and Ψ with respect
to the indeterminates R1, . . . , Rn. He then considered the resultant which
he called T , of S and its derivative ∂S/∂z with respect to z, and showed
that T was necessarily non-zero. At the end of the lengthy proof, which I
shall not attempt to summarise here, Molk commented:

“Cette recherche est nouvelle. Elle offre un exemple frappant de
l’avantage qu’il y a à se servir de méthodes naturelles, sans introduire
aucun élément étranger au domaine dans lequel on se meut. C’est, en
effet, l’impossibilité dans laquelle je me suis trouvé, de démontrer que
le résultant T (t, ψ1, ψ2, . . . , ψn) est différent de zéro, sans supposer
l’existence des racines des équations algébriques, et à l’aide de la générali-
sation des idées de contenant et de contenu donnée au début de ce
chapitre, qui a amené M. Kronecker à généraliser d’avantage encore les
idées de contenant et de contenu en découvrant le théorème auxiliaire
nécessaire à notre démonstration, théorème qui, en réalité, est fondamen-
tal en Algèbre” [Ibid., p. 75].

Molk then observed that it was now easy in a natural domain of
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rationality to decompose a system [F (z),Ψ] into other systems each
containing Ψ. The proof, he said, followed Kronecker’s Lectures of 1883.
And finally, on p. 79, he concluded the entire proof, observing that it had
made no use of the ideas of algebraic numbers or algebraic functions.

As to the decomposition of modular systems or divisor systems, Molk
began by reviewing the discussion provided by Kronecker of points, curves,
and surfaces (he did not mention Kronecker by name at this point).
Then he switched to algebra. He took a domain of integrity as fixed,
and said that a function in the domain contains a system of divisors when
it can be represented by a homogenous linear function of elements of
the system with coefficients that also belong to the domain. The theory
of the resultant in this setting rapidly becomes complicated, requiring
certain linear changes of variable to avoid misleading results. Molk agreed
with Kronecker that the best way forward was to work systematically
with new indeterminates — a move that was not to win converts to
the theory. They permit the introduction of a technical tool called the
resolvent (which I shall not define here); it can be thought of as extending
the use of the resultant of two polynomials to the case where the number
of equations exceeds the number of unknowns. But even in this case a
real difficulty arose when the resolvent had multiple factors. The question
is whether to each decomposition of the resolvent there corresponds a
decomposition of the divisor system. If the resolvent has no multiple
factors, then this is the case. When there are multiple factors, this can
fail. Molk gave this example, taken from Kronecker’s Grundzüge (§21).
The divisor system (x2 + y, y2) is certainly not irreducible, because the
system (x2 + y = 0, y2 = 0) contains the system (x = 0, y = 0). However,
and this reveals the “différence essentielle” [Molk 1885, p. 106] between
divisors of rank 2 and those of rank 1, it is easy to see that the system
(x2 + y, y2) does not decompose into two systems of which one is (x, y).
Therefore there are systems which are not decomposable and are not
irreducible.

Rather than enlarge the idea of decomposition, and thereby lose its
essential character of separation, Molk thereafter restricted his attention
to systems which can be obtained by arbitrary composition of irreducible
systems of ranks 1 and 2. This led him to describe a general theory of elim-
ination and the decomposition of systems in only two variables, leaving
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a general theory without recourse to algebraic functions for the future.
Molk’s general theory of elimination proceeded at such a general level,
without recourse to a single example, that it remains obscure. The task
is to re-write a system of m equations Gi(x1, . . . , xn) = 0 in n variables
in one equation (called the resolvent) of the form R1 · R2 · · ·Rn = 0. This
being done, the task then became to analyse each polynomial Ri. The
conclusion, which Molk then expressed in geometrical language, was that:

“Toute variété k-ième, prise dans une variété n-ième, peut être figurée
par une variété k-ième, prise dans une variété (k + 1)-ième, — par une
variété dont le résolvant est, par suite, de rang un — et cette dernière
variété k-ième peut être choisie arbitrairement parmi tous les individus
faisant partie d’une classe déterminée” [Ibid., p. 155].

More work allowed Molk to claim that “(n + 1) équations suffisent
toujours et sont en général nécessaires pour isoler [. . . ] une variété d’ordre
quelconque, prise dans une variété n-ième” [Ibid., p. 163].

At the end of his paper, Molk made a number of claims about the
importance of this type of work. He had shown how to decompose
systems of polynomials and explained what was meant by equivalent
decompositions (cf. Grundzüge, §20). This ultimately allowed Molk to
say that the most general domain of rationality possible was indeed what
he had called the general domain of rationality (cf. Grundzüge, §10).

The concept of content, generalising that of divisibility, was extolled
even as it too was found to be insufficient. The concept of greatest
common divisors was placed at the basis of the whole work. The theory
of elimination was found to have implications for the geometry of higher
dimensions.

6. KÖNIG

The work of Gyula (Julius) König, published simultaneously in German
and his native Hungarian, has become almost forgotten. The passing
reference to it in van der Waerden’s essay is not entirely accurate. It runs,
in its entirety, as follows: “Elimination theory was developed by Kronecker
and his school”. Werner Burau, in his article in the Dictionary of scientific
biography on König, however, says that “König had had very little personal
contact with Kronecker”, and indeed König spent his working life in
Budapest, having studied at Vienna and Heidelberg. He did not claim
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any personal acquaintance with Kronecker or reliance on correspondence
or letters. Rather, he seems to have set himself the task, as he turned
fifty, of writing a useful book sorting out an important topic for which no
guide exists. Such a work, if successful, will draw others into the field who
will go on to discover better results, simpler and more general methods,
and if it does not attain the status of a classic gradually the work will
be covered up and forgotten. Such, at all events, was the fate of König’s
Einleitung in die allgemeine Theorie der algebraischen Gröszen [1903]. In
view of its importance in its day, it is worth saying a little about König
himself.

The man and his work are well described in Szénássy [1992], where
he rates a chapter to himself, and much more information, including a
whole book on him by Szénássy, is available in the Hungarian literature
(which I regret I cannot read). Szénássy called König “a great man of the
nation” (p. 333) and credits him with establishing Hungarian mathematics
as a significant force. This he did as much by his own work as by
his magnetic personality and the breadth of his organisational work:
training teachers and engineers as well as professional mathematicians,
lecturing on everything from pure analysis to economics and history of
mathematics. Szénássy writes (p. 241) that Hungarian “secondary school
education benefited for decades from his textbook on algebra”. König helped
found the Hungarian Mathematical Society, worked with publishers, and
was three times Rector of the Technical University. In research, it was
his habit to work on one area of mathematics at a time, publish several
papers and then a monograph summarising the field, and then move on. He
worked on algebra, then analysis and partial differential equations, and
finally on Cantorian set theory, where he is better remembered for his
unsuccessful attempt on Cantor’s continuum hypothesis than for several
smaller but secure contributions (see [Moore 1982, p. 86]).

Szénássy’s discussion of König’s Einleitung is rather brief, and although
he points out the debt to Kronecker and the extent of the new material,
much of it by König himself, it masks the importance of the book by listing
its main topics in unduly modern language. In fact, the book possesses
two aspects of interest to us. One is the novel mathematical concepts it
introduces; the other is the insights of a sharp critic of the period.

From the standpoint of the early history of field theory, König’s
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book introduced some useful terminology and made some interesting
distinctions. He based his account on the twin concepts of an orthoid
domain and a holoid domain. An orthoid domain corresponds exactly to
our concepts of a field (of characteristic zero) and a holoid domain to our
(commutative) ring with a unit 1 such that no sum of the form 1+1+· · ·+1
vanishes; Szénássy incorrectly glosses a holoid domain as an integral
domain. König gave no rationale for the terms; presumably he had in mind
the Greek roots holo for whole or entire and ortho for straight or right.
He advocated the terms holoid and orthoid to express general properties
of domains, by analogy with the integers and rational numbers.

As König saw it, a field, a Körper in Dedekind’s terminology, is an
orthoid domain (certain vaguenesses in Dedekind’s definitions, and certain
methodological differences, aside). But a field or orthoid domain is not
the same concept as Kronecker’s domain of rationality. König argued
first that Kronecker’s natural domains were obtained by taking any finite
set of µ elements from any holoid or orthoid domain, and forming the
function field in them (so non-trivial relations may exist among these
generators). This gave an orthoid domain that, he said, Kronecker called
a domain of rationality. It might be that just one element was chosen, and
it was equal to 1, in which case the absolute domain of rationality was
obtained (i.e. the rational numbers). If the µ quantities were completely
undetermined the resulting domain was the natural domain of rationality
in µ indeterminates. It follows that every domain of rationality is an
algebraic extension of a natural domain of rationality. His proof was to
pick x and form polynomials in x with at least one non-zero coefficient.
Either none vanish or one at least does. In the first case, the domain of
rationality is (x), i.e. Q(x). In the second case, x is an algebraic number
and (x), i.e. Q(x) is an algebraic extension. The proof for any number of
elements x follows by induction.

Conversely, if all the elements of an orthoid domain can be written
in the form r1ω1 + · · · + rnωn, where the ri belong to a natural domain
of rationality D = (x1, . . . , xm) then the orthoid domain is a domain of
rationality. For this, he first showed that every ω in the orthoid domain
satisfies a polynomial equation with coefficients in the natural domain of
rationality D. In particular, this is true of the quantities ω1, . . . , ωn so D
and the domain of rationality in which x1, . . . , xm, ω1, . . . , ωn are adjoined



28 J. GRAY

to Q coincide.
The smallest number n of elements ωi is therefore the order of the

domain of rationality thought of as an algebraic extension of its underlying
natural domain of rationality. The elements ω1, . . . , ωn themselves form
a basis for the domain of rationality. But an orthoid domain is not
necessarily a domain of rationality. For example, the domain of all
algebraic numbers is an orthoid domain that is not a domain of rationality.
The domains of real and of complex numbers are likewise orthoid but not,
König seems to suggest, domains of rationality.

König found much to criticise. The original papers were very hard to
read and remained restricted to a small circle of readers. They had there-
fore, he said, failed in their principal purpose and so he had set himself the
task of popularising the spirit of Kronecker’s method. He was pleased to
offer an elementary proof of Kronecker’s fundamental theorem. From this
he deduced a generalisation of the concept of resultant to what he called
the Resultantform which enabled him to deal with multiplicities in systems
of equations. Geometrically, he gave a general account of Noether’s
fundamental theorem in n-dimensional space, which he connected to
results of Hilbert. Arithmetically, he showed how to decompose algebraic
integers in terms of prime ideals.

Kronecker’s fundamental theorem is the result he proved after so much
effort in 1883, and which Molk had then reproved in much the same way,
claiming however that it was elementary. König introduced it for two
polynomials in one variable: f(x) =

∑
aix

m−i and g(x) =
∑

bix
n−i,

whose product is

f(x)g(x) =
∑

cix
m+n−i.

The theorem claims that there are identities connecting the products aibj
and homogeneous linear expressions in the ck. Similarly in general, there
are identities connecting the products of the coefficients of any number of
polynomials and the coefficients of the product. König went on to offer a
truly elementary (and for that matter simple) proof of this result. Since
Edwards says that Kronecker’s paper remains obscure to him, and since he
then explains just why it is so significant, it is worth digressing to explain
what is going on. The matter is discussed in Edwards [1990, part 0].

It is a famous result due to Gauss that if the coefficients of the product
f(x)g(x) of two monic polynomials are all integers, then so are all the
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coefficients of the polynomials themselves, f(x) and g(x). This can be
generalised: if the coefficients of the product f(x)g(x) are all algebraic
integers, then so are all the coefficients of f(x) and g(x). Dedekind proved
that if the coefficients of a product f(x)g(x) are all integers, then the
product of any coefficient of f(x) and any coefficient of g(x) is an integer
(the constituents need no longer be monic). This he then generalised: if
the coefficients of the product f(x)g(x) are all algebraic integers, then
the product of any coefficient of f(x) and any coefficient of g(x) is an
algebraic integer. He published it in 1892, and it became known as his
Prague theorem (because of its place of publication). Unquestionably he
did not know that it was a consequence of Kronecker’s theorem published
in 1883. Either he had not read that paper or we have further evidence
that it was obscure.

What Kronecker, Molk, and König all proved, in their different ways,
is that the modular system generated by the products aibj and the ck are
equivalent in an extended sense of the term due to Kronecker. Let us call
this result the ABC theorem. What Landsberg [1899, p. 313] pointed out
is that Hilbert’s Nullstellensatz shows that the concepts of equivalence
for systems of equations and for the corresponding modular systems are
not exactly the same. Moreover, this problem had already been spotted
and dealt with by Kronecker, and Kronecker’s discussion is exactly the
theorem we are discussing. Let the module generated by the products aibj

denoted AB, and that generated by the ck denoted C. Then certainly
C is divisible by AB. Conversely, every aibj is the root of polynomial
equation vm + g1v

m−1 + · · · + gm = 0 whose coefficients are divisible by
successive powers of C (gi by Ci). Kronecker called such a function v

divisible by C in an extended sense, and proclaimed the equivalence of
the modular systems AB and C in this sense. In a short paper of 1895,
Hurwitz deduced that if the ai and bj are algebraic integers and the ck
are divisible by an algebraic integer ω, then so is every product aibj. In
modern terms this is a theorem about the integral dependence of ideals.

König’s book is at its most geometrical in chapter 7 (Linear Diophan-
tine problems, general theorems and algebraic theory). He posed the sit-
uation this way. Given a (possibly strict) holoid domain A, and a form
domain over it [A, x1, . . . , xm], let Fij (i = 1, . . . , k; j = 0, . . . , -) be
forms in that domain. The problem is to find forms X1, . . . , X
 in the
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given domain so that the following k linear Diophantine equations in the -
unknowns are satisfied

Fi1X1 + Fi2X2 + · · ·+ Fi�
X
 = Fi0 (i = 1, . . . , k).

Two cases had to be distinguished: when A is orthoid; and when A is
the rational integers (corresponding to an algebraic and an arithmetic
formulation of the problem). This does not sound remotely geometrical;
rather it is a refinement of the general thrust of the book, which is
elimination theory. The turn to geometry came 40 pages into the chapter,
in §12 “Der verallgemeinerte Noethersche Satz” (The generalised Noether
theorem).

The theorem applied to such situations as these. Let F1, F2, F3 be
polynomials in variables x, y, z. Assume that the equations Fi = 0 each
separately define an algebraic surface in 3-space, and that these surfaces
meet in r points P1 = (ξ11, ξ12, ξ13), . . . , Pr = (ξr1, ξr2, ξr3). Necessary
and sufficient conditions for a given polynomial Φ in x, y, z to belong to
the divisor system defined by F1, F2, F3 were then given in terms of the

existence of forms Hij such that Φ−
3∑

j=1

HijFi vanishes to suitable orders

at the points P1, . . . , Pr. The generalisation of this theorem applies to m
polynomials in m variables. This was the first time such a generalisation
had been proved.

König then observed that the necessary conditions for an arbitrary
form Φ to belong to a modular system (F1, F2, . . . , Fk) is that Φ vanishes
at the common zeros of the Fi, but that this is not sufficient. Instead,
as Hilbert had shown, if Φ vanishes at those points, then some power
of it belongs to the modular system. This is Hilbert’s Nullstellensatz.
König then showed how to replace Hilbert’s “rather complicated” proof
and establish the theorem as a simple corollary of the elimination theory
developed in his book.

How Noether’s theorem can fail

When the number of variables and the number of polynomials is
the same, the context is that of the principal class, in Kroneckerian
terminology. This numerical coincidence is far from being trivial. To see
that Noether’s theorem is a delicate one, it is advisable to have a clear
case of how it can fail. The simplest case is provided by a rational quartic
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curve in space. Let the curve, C, be defined as follows

C =
{
[s4, s3t, st3, t4] : s, t ∈ C

}
.

Then C meets any hyperplane, H , in CP3 in four points. If the theorem
were to be true, it would assert that any hypersurface through these four
points is a linear combination of H = 0 and the equations of the surfaces
defining C. There is indeed a quadric, Q, through C ; it is x0x3 − x1x2.
And there are several cubic surfaces, for example x31−x20x2. But there are
infinitely many quadrics through the four points which are not a linear
combination of Q, H , and these cubic surfaces. For more details about
this example, see Eisenbud [1994, p. 466]. Note, at least, that the failure
of Noether’s theorem in this case is complete; there is no prospect that
a valid theorem can be obtained generalising Noether’s theorem to the
present case.

Compare the situation with the other type of quartic curve in space, the
elliptic curve, C′, of genus 1 obtained as the intersection of two quadrics,
Q1 and Q2, say. As before, a hyperplane, H ′, in CP3 meets C in four
points. Noether’s theorem asserts that any hypersurface through these
four points is a linear combination of H ′ = 0 and the equations of the
surfaces defining C, which can be taken to be Q1 = 0 and Q2 = 0, say. It
is now true that any conic in the hyperplane through those four points is
a linear combination of Q1 ∩H ′ and Q2 ∩H ′. It follows that any quadric
through the four points is a linear combination ofQ1,Q2 andH ′. It follows
then that Noether’s theorem is true in this case.

7. LASKER

In 1905 Emanuel Lasker published his important paper “Zur Theorie
der Moduln und Ideale”. He is much better remembered today for having
been the World Chess Champion for 26 years, from 1894, and indeed this
paper was submitted toMathematische Annalen from New York, where he
had gone to play in a tournament. In the paper he introduced the concept
of a primary ideal, and established that every ideal is an intersection of
primary ideals in an essentially unique way. Zariski and Samuel explain
that a primary ideal is the analogue of a power of a prime, so this theorem
is the analogue of the unique factorisation theorem for integers. Lasker
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accomplished much else besides (for example, he gave a proof of König’s
generalisation of Noether’s theorem).

Lasker was a student of M. Noether’s, so it is not surprising that his arti-
cle is full of interesting historical comments. Lasker saw two approaches
deriving from Kummer’s original work. One was Dedekind-Hurwitz, the
other Kronecker-Weber-König. Enlarging the frame of reference to include
geometry, Lasker added the work of Cayley and above all Salmon, as made
rigorous by Noether in his fundamental theorem. He gave quite an exten-
sive list of accounts of this result, culminating in König’s, and of its num-
ber theoretical analogue as formulated by Hensel, Hancock and Landsberg.
However, he said, the important applications Noether had deduced for his
fundamental theorem for geometry, algebraic functions, and abelian inte-
grals, which had shed a powerful light on the significance of the idea of
modules, had waited 20 years for the next important advance. This was
Hilbert’s work, which he summarised in four theorems (two versions of
the basis theorem, the finiteness of syzygies, and the Hilbert polynomial).

8. HADAMARD AND KÜRSCHÁK

József Kürschákwas a Hungarian mathematician educated in Budapest.
He organised seminars with König, and König thanked him for his help
during the writing of his Einleitung. He also shared something of his men-
tor’s breadth of interests and his influence. One sign of this is a prize com-
petition organised for school leavers in mathematics and physics, which is
named after him. In the early 1890s he came into contact with Hadamard
because of his study of the relation between the simple pole of a power
series and its coefficients. This stimulated Hadamard to investigate what
conditions on a power series yield particular types of singularity. One sup-
poses, in the absence of evidence, that it was Jules Molk who encouraged
them to expand upon Landsberg’s article in the Encyklopädie der math-
ematischen Wissenschaften when he came to organise the French version
for his Encyclopédie. At all events, it is a much larger article than the
German original, and its comments provide an interesting view of how all
this material was regarded in 1910–1911. It is not clear, however, what
impact this article had; references to it are hard to find. Let us take it,
then, as a snapshot of the times.
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The first part was published on 30 August 1910. The title is interest-
ing in itself: “Propriétés générales des corps et des variétés algébriques”.
Landsberg’s had been “IB1c Algebraic varieties. IC5 Arithmetic theory
of algebraic quantities”, so it is clear that the editors had not been sure
where to place it, because IB is devoted to algebra and IC to number
theory. Generally speaking, Hadamard and Kürschák kept Kronecker’s
approach at a distance, setting off material specifically of that nature in
square brackets [. . . ]. They reviewed the proliferating terminology care-
fully: The term “known quantities” had given way to Dedekind’s “field”,
which was the same thing as König’s orthoid domain. Kronecker’s domain
of rationality was also a field, more precisely a finite or algebraic extension
of the rationals (the terms “finite” and “algebraic” were regarded as syn-
onyms by Hadamard and Kürschák). There were two sorts of field: num-
ber fields and function fields, but every field contained the field of rational
numbers, which they denoted R. Hadamard and Kürschák regarded the
simplest function field as the function field in n variables, which they
denoted indifferently R. The coefficients were to be unrestricted numeri-
cally, which means complex numbers. If the coefficients were restricted in
any way, say to be rational, they wrote the field RR. They admitted this
was back to front from Kronecker’s approach.

What they called finite or algebraic fields in the strict sense of the
word were simple algebraic extensions of any of the fields just defined, to
wit, the fields that Kronecker had called derived domains of rationality,
reserving the term natural for just the fields in the paragraph above. They
also presented the concept of a field in purely formal terms (analogous to
that of a group, they said). A commutative group is a field, they said,
when it also admits an associative multiplication with a multiplicative
identity, and when every element that is not a divisor of zero has a
unique multiplicative inverse. Weber’s definition was more restrictive,
they observed: the multiplication must be commutative, and there are
no zero divisors. König’s orthoid domains satisfied all these conditions
and were of characteristic 0. What he called a hyperorthoid domain
dropped the condition about divisors of 0, as, for example, the domain
{a+ bx : a, b ∈ C, x2 = 0}. König called a domain pseudoorthoid if it had
no divisors of 0, but was not of characteristic 0. They arose, for example,
by taking numbers modulo a prime. So pseudoorthoid domains were also
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fields in Weber’s sense of the term. Hadamard and Kürschák settled on
the definition of field that agreed with König’s orthoid domain. What is
notable is that at this stage in the paper they were unable to take on
board Steinitz’s paper of 1910. They could only do that at the end of the
paper, printed in the next fascicle and published on 15 February 1911.

A holoid domain satisfies all the defining conditions of an orthoid
domain except those relating to division. From a holoid domain one can
always form an orthoid domain — its field of fractions. The algebraic
integers form a holoid domain. The algebraic integers in a field K likewise
form a holoid domain, as do subdomains generated over the rational
integers by a finite set of algebraic integers. Such domains were called Art
or Species by Kronecker, Ordnung by Dedekind, and rings or integral
domains by Hilbert.

For the purposes of this paper I shall concentrate on the geometrical
side of the article. When a field of algebraic functions is considered as an
algebraic extension of a general field R, it is identical with the function
field attached to an algebraic variety. The analogy breaks down when
the concept of algebraic integer is introduced. Let us, as Hadamard and
Kürschák did, restrict our attention to algebraic curves. In function theory,
an algebraic function is integral when it is finite at every finite point, but
as it stands this concept makes no sense in algebraic function theory,
because birational transformations can interchange finite and infinite
points. Instead, the concept of a divisor takes the leading role, and for
this they referred to the book by Hensel and Landsberg (the definition
is the modern one). Prime divisors correspond to points on the algebraic
curve or Riemann surface. In due course they reached the Riemann-Roch
theorem and the theorem on the reduction of singularities by birational
transformations, all following Hensel and Landsberg.

There followed nine sections due to Kürschák on topics related to
Hensel’s p-adic numbers. After this, in the second fascicle they plunged
into the theory of modular systems, and in due course Hilbert’s invari-
ant theory and the ABC theorem. Hadamard and Kürschák show
that Hilbert’s third theorem implies Noether’s fundamental theorem
(the AF +BG theorem).

The second fascicle, published on 15 February 1911, is also of interest
to us because by now the authors had had time to take on board Steinitz’s
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“Algebraische Theorie der Körper”. This lies outside my theme, but it is
clear from the clarity of the exposition and the new generality of expression
just why Steinitz’s paper had the foundational effect that it did. I take
this opportunity to make another parenthetical remark. Kürschák himself
went on to make an important contribution to the theory of fields which
was promptly taken up by Ostrowski. It is he who extended Hensel’s
idea of forming the p-adic numbers to create the theory of fields with
real valuations. He announced his ideas at the International Congress of
Mathematicians in Cambridge in 1912 (the lecture was actually delivered
by Hadamard) and published them in his paper [Ostrowski 1913].

9. MACAULAY

The English mathematician F.S. Macaulay’s Cambridge Tract The
algebraic theory of modular systems [1916] was the first significant work on
algebraic geometry in the spirit of Hilbert and Kronecker to be written in
Britain. Macaulay had graduated from Cambridge in 1882, and from 1885
to 1911 taught mathematics at one of England’s more ambitious schools,
St Paul’s School in London (J.E. Littlewood was one of his pupils). During
his time as a teacher he published steadily, and was accordingly invited to
address the third International Congress of Mathematicians at Heidelberg
in 1904, where he spoke on his work generalising the Brill-Noether theory
of the intersections of plane curves to higher dimensional varieties. This
may be the only time a school teacher has been invited to present a
paper at the Congresses. After the War he settled in Cambridge, and
was a frequent attender at Baker’s Saturday tea parties, the first regular
mathematical seminars organised at the university.

It is clear from Baker’s somewhat perfunctory obituary of Macaulay
[Baker 1938] that he was by no means convinced that Macaulay’s work
was truly geometry:

“In conversation he was wont to regard the subject as a geometrical one;
but . . . many important differences . . . do in fact disclose themselves . . . .
It is doubtless true that the geometrical approach takes for granted many
algebraic results of which the formal proof is at present incomplete . . .

gratitude is due to such as Macaulay, who seek to supply the evidence
in a purely algebraic form. But up to now an intimate knowledge of the
geometrical aspect seems a necessary part of the algebraist’s equipment”.
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This sense of distance between Baker and Macaulay may explain van
der Waerden’s reminiscence:

“Most important work on the theory of polynomial ideals was done
by . . . Macauly [sic], a schoolmaster who lived near Cambridge, England,
but who was nearly unknown to the Cambridge mathematicians when I
visited Cambridge in 1933. I guess the importance of Macaulay’s work
was known only in Göttingen” [van der Waerden 1971, p. 172].

In fact, Macaulay’s early career does not exactly conform to Baker’s few
comments. They are indeed, as Baker said, “for the most part concerned
with the knotty problem of the multiple points, and the intersections of,
plane algebraic curves”. This was Brill and Noether territory. The whole
burden of Macaulay’s papers is to extend the Brill-Noether theorem to
the general setting and to prove, in that context, the most fundamental
theorem in the subject, the Riemann-Roch theorem. This theorem, which
Macaulay saw geometrically, relates dimensions of families of curves
through a given set of points to the nature of the points on the curve.

Macaulay’s criticisms were trenchant, his remedies well argued, and
contrary to Baker’s remarks, his knowledge of contemporary literature
extensive. One significant source was Castelnuovo, and Macaulay par-
ticularly acknowledged the influence of Charlotte Scott, with whom he
enjoyed quite an extensive co-operation. When he comes to the vexed
topic of the Brill-Noether theorem his references were numerous and his
comments about them sharp. In Macaulay’s [1900, p. 382n], for exam-
ple, Brill and Noether themselves are judged to have given an incomplete
proof and that for only the simple case, which was taken over uncriti-
cally in Clebsch-Lindemann but reworked correctly by Picard and Simart
in the second volume of their treatise [1906]. (A modern mathematician
would not exonerate even the later authors.) Throughout these papers,
Macaulay refers to the problem as a geometrical one requiring a geomet-
rical solution. So the subtleties of multiple points are to be unravelled,
he suggested, by formulating the concept of an infinitesimal curve (whose
branches, so to speak, exemplify the nature of the singularity). In this way
he sought to re-present the conditions imposed on a curve by the require-
ment that it pass through a given multiple point as equivalent conditions
imposed by a set of distinct points.

What might be called Macaulay’s geometrical period ended in 1905
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with his Heidelberg address. It was on the subject of generalising the Brill
and Noether theorem to varieties defined by k polynomials in n variables,
and set out the problem carefully in the plane before sketching how a
generalisation might proceed. The paper, although tentative, represents an
advance on König’s work, by entering the region where Noether’s theorem
may fail. In a footnote to the published paper he tells us that Brill and
Noether informed him at the Congress of the recently published book by
the Hungarian mathematician J. König popularising Kronecker’s much
more algebraic approach, and he offered a few favourable comments on
the work. Indeed, it seems to have made a deep impression on him, for,
a few minor papers aside, and for whatever reason, Macaulay fell silent
in 1905 and when he began again in 1913 he wrote in the language of
what, following Kronecker and König he called modular systems. The
first paper in this style is in the Mathematische Annalen [1913], which is
a direct response to Lasker’s. What Lasker had shown could in principle be
done, Macaulay showed how to do in practise. His second is his Cambridge
Tract [1916].13

In the Tract, a modular system (or module of polynomials) was defined
by Macaulay to be a set of polynomials in n variables such that the
sum of any polynomials in the set is again in the set and the product
of any polynomial in the set with any polynomial in the n variables
is again in the set. This would make a modular system an ideal in a
polynomial ring on n variables, but Macaulay makes further stipulations
which complicate the matter, and into which we need not enter. He
recognised Hilbert’s basis theorem as the main theorem in the subject,
but the main detailed influence he acknowledged was that of Kronecker,
as represented by J. König in his book of 1903.

In the introduction to the book he makes a number of interesting
comments: “The object of the algebraic theory is to discover those general
properties of a module which will afford a means of answering the question
whether a given polynomial is a member of a given module or not.”
(This was the subject of his paper for the Mathematische Annalen.)
“Such a question in its simpler aspect is of importance in Geometry
and in its general aspect is of importance in Algebra.” It is hard to

13 There is more to be said about Macaulay; I hope , with help, to return to him at a
later date.
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know what this distinction implies, but it strikes a familiar chord: “The
theory resembles Geometry in including a great variety of detached and
disconnected theorems. As a branch of Algebra it may be regarded as
a generalised theory of the solutions of equations in several unknowns”
[Macaulay 1916, p. 2]. This attitude to geometry, that it is disorganised
and perhaps even incapable of organisation, is often encountered, although
more usually by those who disdain the subject altogether. It is not the
complaint that geometry lacks rigour, and can only be made rigorous by
importing methods from outside (be they algebraic or analytic). It is the
complaint that the subject lacks a grand design.

It may make Macaulay’s views a little more precise if we consider
the work of his Cambridge contemporaries. There were about a dozen
of these people, of whom Baker was the acknowledged leader, and he
was a geometer in the Italian style. In the main these people studied
interesting curves and interesting surfaces. There was a botanical aspect
to their work, as there had been before to Cayley’s, and the profusion
of special results was accompanied by a number of neat tricks needed to
obtain the results. Ingenious arguments to limited ends do not convey
the impression that there is a deep underlying pattern to it all. Such
work is commonly regarded as routine in any branch of mathematics (and
poses its own problems for the historians who come along afterwards).
If there is an organising principle that, however subtly and diffidently,
shapes the subject and which is occasionally illuminated by papers of real
profundity, then matters are different. If Macaulay, looking at Cambridge
from his school in London, felt the lack of such a focus this would explain
his opinion.

It may also make Macaulay’s views a little more precise if we consider
the trajectory of his own work. It resembles the fate of Noether’s theorem,
in which sweeping general claims were forever called into question by
awkward doubts. The resolution of singularities of algebraic curves is
generally not regarded as having been satisfactorily concluded until the
1930s. Until then most proofs of the theorem and its generalisations were
found wanting (see [Bliss 1923]). Macaulay was one of the sterner critics,
and his work moved more and more towards algebra. This is the more
familiar objection, that rigour in geometry is to be brought about by
injections of algebra, but it denies to geometry an underlying organisation
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of method.
The Tract is, as remarked, a study of ideals in polynomial rings. It

opens with a careful account of the theory of resultants and, for use
when that method breaks down, of Kronecker’s theory of resolvents, as
described by König with further corrections by Macaulay. Then comes the
theory of modules (i.e. ideals), starting with the Hilbert basis theorem
(in König’s proof), Lasker’s theorem, and the Nullstellensatz. Given a
set of polynomials Fi in n variables x1, . . . , xn, a set of solutions which
exist for x1, . . . , xr when the remaining xr+1, . . . , xn take arbitrary values
Macaulay, following König, called a spread of rank r and dimension
(n − r). If there are solutions of rank r and no solutions of rank < r,
the system of equations Fi = 0 and the module generated by the Fi

were said to be of rank r. Macaulay observed that a spread defined by
a system of equations generally broke up into several irreducible spreads.
He used the idea of spreads to give examples of the theorems under
discussion, and by means of the method of resolvents to find fault with
König and especially Hadamard and Kürschák. He was scathing about
König’s definition of simple or mixed modules (which was couched in
terms of the nature of various partial resolvents) and instead offered a
refinement of the geometrical idea that an unmixed module is one whose
spreads are all of the same dimension. The refinement made essential
use of Lasker’s decomposition theorem. This is the origin of the theory
of unmixedness, which is the reason Macaulay’s name survives in the
term Cohen-Macaulay ring. He re-derived Lasker’s proof that a module of
the principal class is unmixed. He then discussed inverse systems, which
appear today in the theory of Gorenstein rings. There is much more to
Macaulay’s Tract than this sketch suggests, but it is technical and I shall
not go into it here. Instead I refer the reader to Paul Roberts’ clear
introduction to the re-edition of the Tract [Macaulay 1916/1996] and turn
instead to Emmy Noether.

10. EMMY NOETHER

As is well known, Emmy was the daughter of Max Noether, and studied
mathematics at Erlangen under Paul Gordan, an old family friend, writing
her thesis on old-fashioned explicit invariant theory before gravitating to
the school of mathematicians around Hilbert at Göttingen. There she
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distinguished herself with work on differential invariants in the theory of
general relativity, as it was being created by Einstein, Hilbert, and Klein.
This remarkable work, in such distinguished company, literally made her
name — it was the occasion of her discovery of what mathematical
physicists call Noether’s theorem on conservation laws to this day (see
Rowe [to appear ]). Then her interests shifted back towards questions
in the algebraic theory of invariants that Hilbert had done so much to
transform from the style of Gordan. The first real signs of this are the
papers [Noether 1915, 1919] some cite and others omit in the compulsion
to get to the major papers she was soon to write [Noether 1921, 1927].

Since these major works are described in many places, and most
recently in [Corry 1996], who however omits the earlier papers, it is
reasonable to reverse the balance and describe only the earlier papers.
For reasons of space, I discuss only the second of them in detail. The first
one is devoted to finding bases for systems of rational functions drawn
from the field Kn,ρ in n variables, any ρ of which are independent but any
ρ+1 of which are connected by an algebraic equation. Whenever possible
a minimal basis of exactly ρ elements is to be found. She cites Lüroth, who
established the existence of minimal bases for Kn,1, but follows Steinitz’s
method of proof in this case, Castelnuovo and Enriques for Kn,2, and
observes that there is not, generally, a basis forKn,ρ, ρ ≥ 3. In view
of comments I shall make below about Emmy Noether’s awareness of
contemporary literature, I note that she cites König’s Einleitung for its
extension of Gordan’s theorem.

The paper [1919], written for the Deutsche Mathematiker-Vereinigung
and published in their Jahresbericht, is aimed at a gap in the Encyklopädie
der mathematischen Wissenschaften. It carries the informative title “The
arithmetic theory of algebraic functions of a single variable, with respect
to the other theories and to the theory of number fields”. It opens with
the remark:

“The following report arises from the wish to have something connecting
the independent theories of algebraic functions; at the same time it can be
read as an extension of the report of Brill and Noether which essentially
lacks a treatment of the arithmetic theory.”14

14 “Der folgende Bericht ist aus dem Wunsche entstanden, ein verbindendes Glied
zwischen den einzelnen Theorien der algebraischen Funktionen zu haben; zugleich kann
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A footnote adds that the report of Brill and Noether did describe
Kronecker’s theory of the discriminant. In barely twenty pages, she
surveyed the transcendental theory of Riemann, the arithmetic theory
of Hensel and Landsberg, and the algebraic geometrical theory of Brill
and Noether, and indicated the parallels between algebraic numbers and
algebraic functions and the corresponding ideal theories. Here she gave
a quick comparison of the definitions of a module due to Hilbert and
Kronecker, but only in a footnote, and noted Hurwitz’s contribution and
its treatment by Weber. She compared the arithmetic and geometrical
theories, looking at how they captured the idea of invariance differently
and at how they treated singular points. Finally she came to compare the
Residue theorem with theorems in the theory of ideals.

The residue theorem of Brill and Noether is usually taken as the main
result of that theory, from which other consequences follow, such as the
Riemann-Roch theorem (see [Gray 1989]). To state it requires recalling
three definitions: two sets of points, A and B, on an algebraic curve X
are said to be coresidual if there is a third point set R such that there is a
curve cutting the curve X in the set A∪R and another curve cutting the
curve X in the set B ∪R. The set R is called the residue of the complete
intersections A∪R and B∪R. The residue theorem asserts that concept is
well-defined; it does not depend on the set R. A curve is called an adjoint
curve of the curve X if it passes (n−1) times through each singular point
of X of order n. The residue theorem implies that if two sets of points A
and B are coresidual then they are coresidual with respect to adjoint
curves (ignoring the behaviour at singular points).

As Hensel and Landsberg had shown, all of this can be written in the
language of ideal theory (Dedekind and Weber had preferred the closely
related language of divisor classes). To a set of points,A, there corresponds
the family of rational functions defined on the curve and vanishing at
those points. This family is an ideal in the ring of all integral rational
functions defined on the curve. If the sets of points A, B, and R generate
ideals, denoted a, b, and r respectively, then the fact that A and R are
coresidual translates as a · r = (α), where α is a rational function on X .

er als eine Ergänzung zu dem Bericht von Brill-Noether angesehen werden, in dem die
Besprechung der arithmetischen Theorie im wesentlichen fehlt” [Noether 1919, p. 271].
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Similarly b · r = (β), where β is another rational function on X , and this
means that a and b are equivalent ideals. The converse is also true, and
so, said Emmy Noether, “equivalent ideals and coresidual sets of points
are therefore identical ideas.”15 She then gave a sketch of the proof of the
residue theorem in the language of ideals, and indicated, still following
Hensel and Landsberg, how this way of thinking extends to cover the
Riemann-Roch theorem. Here she cited papers by R. König [1918, 1919].

One should not place too much significance on this one paper. Noether’s
work takes off with the papers she was to write next. But some comments
can be made. One notes the patchy historical references. Even though
a considerable amount of literature is cited there are omissions (Gyula
König, Macaulay, and even Lasker). Some, but not all of these were to
find their way into the folk memory of Noether’s school. One notes the
ruthless tendency to cut to the heart of a concept, and the preference for
abstract algebra. And one notes the presence of geometry and function
theory, in the form of the theory of complex curves, at the start of
all of this work. What was done with it, whether it was algebra or
geometry, is a topic for another occasion. But it is significant that the
consensus was that the case of plane curves was essentially done, even
though troublesome points remained, while the case of surfaces and higher
dimensional varieties remained obscure. In all those dimensions the neat
one-to-one correspondence between varieties and function fields breaks
down. Birationally equivalent varieties have isomorphic function fields
(regarded as algebras over their ground field). But a birational equivalence
class contains algebraic surfaces that are not even homeomorphic (for
example, CP1 × CP1 and CP2). So studying function fields is weaker
than studying (isomorphism classes of) surfaces, or varieties in higher
dimensions.

CONCLUSION

The fascination of the union of algebra and geometry is precisely
that one does not dominate the other, however much one style may be
favoured by individual writers. We have seen that we cannot conclude

15 “äquivalente Ideale und koresiduale Punktgruppen sind also identische Begriffe”
[Noether 1919, p. 288].
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that in the creation of classical algebraic geometry the questions of
central importance were exclusively algebraic. There was a unity that
embraced quite specific geometrical questions (in the opinion of Hilbert)
and that drew on complex function theory. The central feature, in many
people’s opinion, was the strong analogy between algebraic number theory
and algebraic function theory. This was widely emphasised, not least by
Kronecker and his immediate followers, although he himself did not go
along with the transcendental function theorists. The same unity was
perceived, much more abstractly, by Emmy Noether.

The complexity of the picture is what makes it interesting. Abstract
algebra and classical algebraic geometry have their roots in a rich mixture
of topics: the algebra is visible, the geometry (and even the function
theory) is partially hidden. The role of the minor figures in this story
is to bring out how these connections were seen at the time. What
Macaulay, König, and even Lasker show us is how strong the Kroneckerian
approach was in its day, and yet how cumbersome. It is not possible to say
why it faded almost completely from sight. Claims have been made that
early invariant theorists, such as Gordan, were too interested in explicit
problems, and that later ones, such as Hilbert, were too little interested
(see remarks referred to in [Corry 1996] and [Study 1923]). The latter
claims founder because Hilbert did address specific questions, but it is
plausible that the explicit questions defeated those who tackled them (see
the essay by Sturmfels in [Hilbert 1897/1993]), and that mathematicians
were relieved to be able to give them up (as the anonymous quotation from
Study, quoted in footnote 4 above, suggests). Certainly Emmy Noether
was happy to isolate the abstract kernel of algebra, as she saw it. But it is
not clear if this was part of a reasoned rejection of the approach previously
taken by Kronecker, König, and Macaulay, or the indirect result of a lack
of familiarity with their work (which she knew very little about). Perhaps
by 1919 it had withered on the vine. But if we cannot, here at any rate,
explain why EmmyNoether so splendidly took the route she did (whatever
an explanation of such an event might be) we can conclude that it grew
out of a rich complex of unresolved questions that were to remain, albeit
somewhat hidden, as a vital part of classical algebraic geometry.
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des sciences mathematiques pures et appliquées, I.2, Paris: Gauthier-Villars,
1910, 1911, pp. 233–385.

HANCOCK (H.)

[1902] Remarks on Kronecker’s modular systems, Compte rendu du deuxième
Congrès international des mathématiciens (Paris, 1900), Paris: Gauthier-
Villars, 1902, pp. 161–193.

[1931-1932] Foundations of the theory of algebraic numbers, 2 vols., New York:
Macmillan, 1931, 1932 (repr. New York: Dover, 1964).

HENSEL (K.) and LANDSBERG (G.)

[1902] Theorie der algebraischen Functionen einer Variabeln, Leipzig: Teubner,
1902 (repr. New York: Chelsea, 1965).

HILBERT (D.)

[Ges. Abh. 2] Gesammelte Abhandlungen, vol. 2, Berlin: Springer, 1933; 2nd ed.,
1970.

[1888] Zur Theorie der algebraischen Gebilde, I, Nachrichten von der Königlichen
Gesellschaft der Wissenschaften und der Georg. Augusts-Universität zu
Göttingen, (1888), pp. 450–457; Ges. Abh. 2, pp. 176–183.
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