Catalogue et commandes en ligne (paiement sécurisé, VISA ou MASTERCARD uniquement)

Revues disponibles par abonnement

Annales scientifiques de l'ENS

Astérisque

Bulletin de la SMF

Mémoires de la SMF

Revue d'Histoire des Mathématiques

Gazette des Mathématiciens

Séries de livres

Astérisque

Cours Spécialisés

Documents Mathématiques

Mémoires de la SMF

Panoramas et Synthèses

Séminaires et Congrès

Série Chaire Jean Morlet

SMF/AMS Texts and Monographs

La Série T

Fascicules « Journée Annuelle »

Autres livres

Donald E. Knuth - traductions françaises

Rééditions du Séminaire Nicolas Bourbaki

Rééditions des Œuvres de Jean Leray

Revue de l'Institut Elie Cartan

Editions électroniques

Annales scientifiques de l'ENS

Bulletin de la SMF

Revue d'Histoire des Mathématiques

Séminaires et Congrès

Plus d'information / Abonnement

Publications grand public

L'explosion des mathématiques (smf.emath.fr)

Mathématiques L'explosion continue (smf.emath.fr)

Zoom sur les métiers des maths (smf.emath.fr)

Zoom sur les métiers des mathématiques et de l'informatique (smf.emath.fr)

Où en sont les mathématiques ?

La Série T

Pour les auteurs

Soumission des manuscrits

Formats et documentation

Plus d'info

Liste de diffusion électronique (smf.emath.fr)

Information pour les libraires et diffuseurs (smf.emath.fr)

Publications de la SMF
fr en
Votre numéro IP : 54.234.247.118
Accès aux édit. élec. : SémCong

Mémoires de la SMF

Présentation de la publication

Parutions

Dernières parutions

Comité de rédaction / Secrétariat

Année :
Volume :

Faire une recherche


Catalogue & commande

Mémoires de la SMF - Parutions - 118 (2009)

Parutions < 2009

Topological properties of Rauzy fractals
Anne Siegel, Jörg M. Thuswaldner
Mémoires de la SMF 118 (2009), 144 pages
Télécharger le document
Acheter l'ouvrage

Résumé :
Propriétés topologiques des fractals de Rauzy
Les fractals de Rauzy apparaissent dans diverses branches des mathématiques telles que la théorie des nombres, les systèmes dynamiques, la combinatoire et la théorie des quasi-cristaux. De nombreuses questions font alors intervenir la structure topologique des fractals. Cette monographie propose une étude systématique des propriétés topologiques des fractals de Rauzy. Les premiers chapitres de ce document rappellent les enjeux mathématiques relatifs aux fractals de Rauzy ainsi que les principaux résultats connus à leur sujet. Sont ensuite discutés des propriétés de pavages, de connexité, d'homéomorphisme à un disque, ainsi que le groupe fondamental de ces ensembles. Les méthodes s'appuient sur des résultats en topologie du plan et sur la construction de graphes pour décrire la structure des pavages associés aux fractals. De nombreux exemples caractéristiques sont présentés. Un chapitre final discute des principales perspectives de recherches liées à cette thématique.

Mots-clefs : Fractal de Rauzy, Pavage, beta-numération, connexité, homéomorphisme à un disque, groupe fondamental

Abstract:
Substitutions are combinatorial objects (one replaces a letter by a word) which produce sequences by iteration. They occur in many mathematical fields, roughly as soon as a repetitive process appears. In the present monograph we deal with topological and geometric properties of substitutions, in particular, we study properties of the Rauzy fractals associated to substitutions. To be more precise, let be a substitution over the finite alphabet A. We assume that the incidence matrix of is primitive and that its dominant eigenvalue is a unit Pisot number (i.e., an algebraic integer greater than one whose norm is equal to one and all of whose Galois conjugates are of modulus strictly smaller than one). It is well-known that one can attach to a set which is called central tile or Rauzy fractal of . Such a central tile is a compact set that is the closure of its interior and decomposes in a natural way in n=|A| subtiles (1),,(n). The central tile as well as its subtiles are graph directed self-affine sets that often have fractal boundary. Pisot substitutions and central tiles are of high relevance in several branches of mathematics like tiling theory, spectral theory, Diophantine approximation, the construction of discrete planes and quasicrystals as well as in connection with numeration like generalized continued fractions and radix representations. The questions coming up in all these domains can often be reformulated in terms of questions related to the topology and the geometry of the underlying central tile. After a thorough survey of important properties of unit Pisot substitutions and their associated Rauzy fractals the present monograph is devoted to the investigation of a variety of topological properties of and its subtiles. Our approach is an algorithmic one. In particular, we dwell upon the question whether and its subtiles induce a tiling, calculate the Hausdorff dimension of their boundary, give criteria for their connectivity and homeomorphy to a closed disk and derive properties of their fundamental group. The basic tools for our criteria are several classes of graphs built from the description of the tiles (i) (1in) as the solution of a graph directed iterated function system and from the structure of the tilings induced by these tiles. These graphs are of interest in their own right. For instance, they can be used to construct the boundaries as well as (i) (1in) and all points where two, three or four different tiles of the induced tilings meet. When working with central tiles in one of the above mentioned contexts it is often useful to know such intersection properties of tiles. In this sense the present monograph also aims at providing tools for ``everyday's life'' when dealing with topological and geometric properties of substitutions. Many examples are given throughout the text in order to illustrate our results. Moreover, we give perspectives for further directions of research related to the topics discussed in this monograph.

Keywords: Rauzy fractal, tiling, beta-numeration, connectivity, homeomorphy to a disk, fundamental group

Class. math. : 28A80, 11A63, 54F65


ISBN : 978-2-85629-290-7
ISSN : 0249-633-X
DOI : 10.24033/msmf.430
Publié avec le concours de : Centre National de la Recherche Scientifique

Bibliographie:

1
Adamczewski, Boris and Bugeaud, Yann
On the complexity of algebraic numbers. I. Expansions in integer bases
Ann. of Math. 165 (2007) 547–565
Math Reviews MR2299740
2
Adamczewski, Boris and Bugeaud, Yann and Davison, Les
Continued fractions and transcendental numbers
Ann. Inst. Fourier (Grenoble) 56 (2006) 2093–2113
Math Reviews MR2290775
3
Adamczewski, Boris and Frougny, C. and Siegel, A. and Steiner, W.
Rational numbers with purely periodic beta-expansion
J. London Math. Soc. 42 (2010) 538-552
4
Adler, Roy L.
Symbolic dynamics and Markov partitions
Bull. Amer. Math. Soc. (N.S.) 35 (1998) 1–56
Math Reviews MR1477538
5
Adler, Roy L. and Weiss, Benjamin
Similarity of automorphisms of the torus
Amer. Math. Soc., 1970
Math Reviews MR0257315
6
Akiyama, Shigeki
Pisot numbers and greedy algorithm
in Number theory (Eger, 1996)
(1998) 9–21
7
Akiyama, Shigeki
Self affine tiling and Pisot numeration system
in Number theory and its applications (Kyoto, 1997)
Dev. Math. 2 (1999) 7–17
8
Akiyama, Shigeki
Cubic Pisot units with finite beta expansions
in Algebraic number theory and Diophantine analysis (Graz, 1998)
(2000) 11–26
9
Akiyama, Shigeki
On the boundary of self affine tilings generated by Pisot numbers
J. Math. Soc. Japan 54 (2002) 283–308
10
Akiyama, Shigeki
Pisot number system and its dual tiling
in Physics and Theoretical Computer Science (Cargese, 2006)
(2007) 133-154
11
Akiyama, Shigeki and Barat, G. and Berthé, V. and Siegel, A.
Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions
Monatsh. Math. 155 (2008) 377–419
12
Akiyama, Shigeki and Borbély, T. and Brunotte, H. and Pethő, A. and Thuswaldner, J. M.
Generalized radix representations and dynamical systems. I
Acta Math. Hungar. 108 (2005) 207–238
Math Reviews MR2162561
13
Akiyama, Shigeki and Brunotte, H. and Pethő, A. and Thuswaldner, J. M.
Generalized radix representations and dynamical systems. II
Acta Arith. 121 (2006) 21–61
14
Akiyama, Shigeki and Brunotte, H. and Pethő, A. and Thuswaldner, J. M.
Generalized radix representations and dynamical systems. III
Osaka J. Math. 45 (2008) 347–374
15
Akiyama, Shigeki and Brunotte, H. and Pethő, A. and Thuswaldner, J. M.
Generalized radix representations and dynamical systems. IV
Indag. Math. (N.S.) 19 (2008) 333–348
16
Akiyama, Shigeki and Dorfer, G. and Thuswaldner, J. M. and Winkler, R.
On the fundamental group of the Sierpiński-gasket
Topology Appl. 156 (2009) 1655–1672
17
Akiyama, Shigeki and Nertila, G.
On the connectedness of self-affine tilings
Arch. Math. 82 (2004) 153–163
18
Akiyama, Shigeki and Rao, Hui and Steiner, W.
A certain finiteness property of Pisot number systems
J. Number Theory 107 (2004) 135–160
19
Akiyama, Shigeki and Scheicher, Klaus
Intersecting two-dimensional fractals with lines
Acta Sci. Math. (Szeged) 71 (2005) 555–580
Math Reviews MR2206596
20
Allauzen, Cyril
Une caractérisation simple des nombres de Sturm
J. Théor. Nombres Bordeaux 10 (1998) 237–241
Math Reviews MR1828243
21
Allouche, J.-P. and Shallit, J. O.
Automatic sequences: Theory and Applications
Cambridge Univ. Press, 2002
22
Anderson, J. and Putnam, I.
Topological invariants for substitution tilings and their associated C^*-algebras
Ergodic Theory Dynam. Systems 18 (1998) 509–537
23
Arnoux, P.
Un exemple de semi-conjugaison entre un échange d'intervalles et une translation sur le tore
Bull. Soc. Math. France 116 (1988) 489–500
Math Reviews MR1005392
24
Arnoux, P. and Bernat, J. and Bressaud, X.
Geometrical models for substitutions
Experiment. Math. (2010) to appear
25
Arnoux, P. and Berthé, V. and Ei, H. and Ito, S.
Tilings, quasicrystals, discrete planes, generalized substitutions, and multidimensional continued fractions
in Discrete models: combinatorics, computation, and geometry (Paris, 2001)
Discrete Math. Theor. Comput. Sci. Proc., AA (2001) 059–078
Math Reviews MR1888763
26
Arnoux, P. and Berthé, V. and Fernique, Thomas and Jamet, D.
Functional stepped surfaces, flips, and generalized substitutions
Theoret. Comput. Sci. 380 (2007) 251–265
Math Reviews MR2330996
27
Arnoux, P. and Berthé, V. and Hilion, A. and Siegel, A.
Fractal representation of the attractive lamination of an automorphism of the free group
Ann. Inst. Fourier (Grenoble) 56 (2006) 2161–2212
Math Reviews MR2290778
28
Arnoux, P. and Berthé, V. and Ito, S.
Discrete planes, Z^2-actions, Jacobi-Perron algorithm and substitutions
Ann. Inst. Fourier (Grenoble) 52 (2002) 305–349
29
Arnoux, P. and Furukado, M. and Harriss, E. and Ito, S.
Algebraic numbers, group automorphisms and substitution rules on the plane
Trans. Amer. Math. Soc. (2010) in press
30
Arnoux, P. and Ito, S.
Pisot substitutions and Rauzy fractals
Bull. Belg. Math. Soc. Simon Stevin 8 (2001) 181–207
Math Reviews MR1 838 930
31
Baker, V. and Barge, Marcy and Kwapisz, Jaroslaw
Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to beta-shifts
Ann. Inst. Fourier 56 (2006) 2213–2248
32
Bandt, C. and Gelbrich, G.
Classification of self-affine lattice tilings
J. London Math. Soc. 50 (1994) 581–593
33
Barat, G. and Berthé, V. and and Liardet, P. and Thuswaldner, J. M.
Dynamical directions in numeration
Ann. Inst. Fourier (Grenoble) 56 (2006) 1987–2092
Math Reviews MR2290774
34
Barge, Marcy and Diamond, B.
Coincidence for substitutions of Pisot type
Bull. Soc. Math. France 130 (2002) 619-626
35
Barge, Marcy and Kwapisz, Jaroslaw
Geometric theory of unimodular Pisot substitutions
Amer. J. Math. 128 (2006) 1219–1282
Math Reviews MR2262174
36
Bassino, F.
Beta-expansions for cubic Pisot numbers
in LATIN 2002: Theoretical informatics (Cancun)
Lecture Notes in Comput. Sci. 2286 (2002) 141–152
37
Baum, Leonard E. and Sweet, Melvin M.
Continued fractions of algebraic power series in characteristic 2
Ann. of Math. 103 (1976) 593–610
Math Reviews MR0409372
38
Béal, M.-P. and Perrin, Dominique
Symbolic dynamics and finite automata
in Handbook of Formal Languages
2 (1997) 463-503
39
Bernat, J.
Arithmetics in -numeration
Discrete Math. Theor. Comput. Sci. 9 (2007) 85–106
40
Bernat, J.
Computation of L_ for several cubic Pisot numbers
Discrete Math. Theor. Comput. Sci. 9 (2007) 175–193
41
Berstel, Jean and Perrin, Dominique
The origins of combinatorics on words
European J. Combin. 28 (2007) 996–1022
Math Reviews MR2300777
42
Berthé, V. and Ferenczi, S. and Zamboni, L. Q.
Interactions between dynamics, arithmetics and combinatorics: the good, the bad, and the ugly
in Algebraic and topological dynamics
Contemp. Math. 385 (2005) 333–364
Math Reviews MR2180244
43
Berthé, V. and Fernique, Thomas
Brun expansions of Stepped Surfaces
Preprint (2010)
44
Berthé, V. and Siegel, A.
Tilings associated with beta-numeration and substitutions
INTEGERS (Electronic Journal of Combinatorial Number Theory) 5 (2005)
45
Berthé, V. and Siegel, A.
Purely periodic -expansions in the Pisot non-unit case
J. Number Theory 127 (2007) 153–172
Math Reviews MR2362431
46
Berthé, V. and Siegel, A. and Steiner, W. and Surer, P. and Thuswaldner, J. M.
Fractal tiles associated with shift radix systems
Advances in Mathematics (2010) in press
47
Berthé, V. and Siegel, A. and Thuswaldner, J. M.
Substitutions, Rauzy fractals, and tilings
in Combinatorics, Automata, and Number Theory
Encyclopedia of Mathematics and its Applications (to appear)
48
Bertrand-Mathis, A.
Développement en base ; répartition modulo un de la suite (xn)n0; langages codés et -shift
Bull. Soc. Math. France 114 (1986) 271–323
Math Reviews MR88e:11067
49
Bestvina, M. and Feighn, M. and Handel, M.
Laminations, trees, and irreducible automorphisms of free groups
Geom. Funct. Anal. 7 (1997) 215–244
50
Bestvina, M. and Feighn, M. and Handel, M.
Laminations, trees, and irreducible automorphisms of free groups
Geom. Funct. Anal. 7 (1997) 215–244
Math Reviews MR1445386
51
Bestvina, M. and Handel, M.
Train tracks and automorphisms of free groups
Ann. of Math. 135 (1992) 1–51
52
Blanchard, F.
-expansions and symbolic dynamics
Theoret. Comput. Sci. 65 (1989) 131–141
53
Bombieri, E. and Taylor, J. E.
Which distributions of matter diffract? An initial investigation
J. Physique 47 (1986) C3-19–C3-28
Math Reviews MR88a:52015
54
Bowen, Rufus
Equilibrium states and the ergodic theory of Anosov diffeomorphisms
Springer, 1975
Math Reviews MR0442989
55
Bowen, Rufus
Markov partitions are not smooth
Proc. Amer. Math. Soc. 71 (1978) 130–132
Math Reviews MR0474415
56
Burdik, C. and Frougny, C. and Gazeau, Jean-Pierre and Krejcar, R.
Beta-integers as natural counting systems for quasicrystals
J. of Physics A: Math. Gen. 31 (1998) 6449–6472
57
Cannon, J. W. and Conner, G. R.
The combinatorial structure of the Hawaiian earring group
Topology Appl. 106 (2000) 225–271
58
Canterini, V.
Connectedness of geometric representation of substitutions of Pisot type
Bull. Belg. Math. Soc. Simon Stevin 10 (2003) 77–89
59
Canterini, V. and Siegel, A.
Geometric representation of substitutions of Pisot type
Trans. Amer. Math. Soc. 353 (2001) 5121–5144
Math Reviews MR1 852 097
60
Cassaigne, J. and Ferenczi, S. and Zamboni, L. Q.
Imbalances in Arnoux-Rauzy sequences
Ann. Inst. Fourier (Grenoble) 50 (2000) 1265–1276
Math Reviews MR2001j:68097
61
Cawley, Elise
Smooth Markov partitions and toral automorphisms
Ergodic Theory Dynam. Systems 11 (1991) 633–651
Math Reviews MR1145614
62
Chekhova, N. and Hubert, P. and Messaoudi, A.
Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci
J. Théor. Nombres Bordeaux 13 (2001) 371–394
Math Reviews MR2003g:37017
63
Cobham, Alan
Uniform tag sequences
Math. Systems Theory 6 (1972) 164–192
Math Reviews MR0457011
64
Conner, G. R. and Lamoreaux, J. W.
On the existence of universal covering spaces for metric spaces and subsets of the Euclidean plane
Fund. Math. 187 (2005) 95–110
65
Cooper, D.
Automorphisms of free groups have finitely generated fixed point sets
J. Algebra 111 (1987) 453-456
66
Coulbois, T. and Hilion, A. and Lustig, M.
R-trees and laminations for free groups. I. Algebraic laminations
J. Lond. Math. Soc. 78 (2008) 723–736
67
Coulbois, T. and Hilion, A. and Lustig, M.
R-trees and laminations for free groups. II. The dual lamination of an R-tree
J. Lond. Math. Soc. 78 (2008) 737–754
68
Coulbois, T. and Hilion, A. and Lustig, M.
R-trees and laminations for free groups. III. Currents and dual R-tree metrics
J. Lond. Math. Soc. 78 (2008) 755–766
69
Coulbois, T. and Hilion, A. and Lustig, M.
R-trees, dual laminations and compact systems of partial isometries
Math. Proc. Cambridge Philos. Soc. 147 (2009) 345–368
70
Crisp, D. and Moran, W. and Pollington, A. and Shiue, P.
Substitution invariant cutting sequences
J. Théor. Nombres Bordeaux 5 (1993) 123–137
Math Reviews MR1251232
71
Dekking, F. M.
The spectrum of dynamical systems arising from substitutions of constant length
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 41 (1977/78) 221–239
Math Reviews MR57 #1455
72
Delgrange, O and Rivals, E.
STAR: an algorithm to Search for Tandem Approximate Repeats
Bioinformatics 20 (2004) 2812-20
73
Dumont, Jean-Marie and Thomas, Alain
Systemes de numeration et fonctions fractales relatifs aux substitutions
Theoret. Comput. Sci. 65 (1989) 153–169
74
Dumont, Jean-Marie and Thomas, Alain
Digital sum moments and substitutions
Acta Arith. 64 (1993) 205–225
75
Dumont, Jean-Marie and Thomas, Alain
Gaussian asymptotic properties of the sum-of-digits function
J. Number Theory 62 (1997) 19–38
76
Durand, F.
A generalization of Cobham's theorem
Theory Comput. Syst. 31 (1998) 169–185
Math Reviews MR98k:11019
77
Durand, F. and Messaoudi, A.
Boundary of the Rauzy fractal set in R C generated by P(x) = x^4-x^3-x^2-x-1
Osaka J. of Math. (2010) in press
78
Eda, Katsuya and Kawamura, Kazuhiro
The fundamental groups of one-dimensional spaces
Topology Appl. 87 (1998) 163–172
Math Reviews MR1624308
79
Ei, H. and Ito, S.
Tilings from some non-irreducible Pisot substitutions
Discrete Math. Theor. Comput. Sci. 7 (2005) 81–122
80
Ei, H. and Ito, S. and Rao, Hui
Atomic surfaces, tilings and coincidences II. Reducible case
Ann. Inst. Fourier 56 (2006) 2285–2313
81
Einsiedler, M. and Schmidt, K.
Markov partitions and homoclinic points of algebraic Zd-actions
Tr. Mat. Inst. Steklova 216 (1997) 265–284
Math Reviews MR1632169
82
Falconer, K.
Fractal geometry
John Wiley Sons Ltd., 1990
83
Feng, D.-J. and Furukado, M. and Ito, S. and Wu, J.
Pisot substitutions and the Hausdorff dimension of boundaries of atomic surfaces
Tsukuba J. Math. 30 (2006) 195–223
Math Reviews MR2248292
84
Fernique, Thomas
Generation and recognition of digital planes using multi-dimensional continued fractions
in Discrete geometry for computer imagery
Lecture Notes in Comput. Sci. 4992 (2008) 33–44
Math Reviews MR2503454
85
Fogg, N. Pytheas
Substitutions in dynamics, arithmetics and combinatorics
Springer, 2002
Math Reviews MR1 970 385
86
Frougny, C. and Solomyak, B.
Finite beta-expansions
Ergodic Theory Dynam. Systems 12 (1992) 45-82
87
Fuchs, C. and Tijdeman, R.
Substitutions, abstract number systems and the space filling property
Ann. Inst. Fourier (Grenoble) 56 (2006) 2345–2389
Math Reviews MR2290784
88
Gaujal, Bruno and Hordijk, Arie and der Laan, Dinard Van
On the Optimal Open-Loop Control Policy for Deterministic and Exponential Polling Systems
Probability in Engineering and Informational Sciences 21 (2007) 157-187
89
Gazeau, Jean-Pierre and Verger-Gaugry, Jean-Louis
Geometric study of the beta-integers for a Perron number and mathematical quasicrystals
J. Théor. Nombres Bordeaux 16 (2004) 125–149
Math Reviews MR2145576
90
Hata, M.
On the structure of self-similar sets
Japan J. Appl. Math. 2 (1985) 381–414
91
Hedlund, G. A.
Remarks on the work of Axel Thue on sequences
Nordisk Mat. Tidskr. 15 (1967) 148–150
Math Reviews MR0228875
92
Hollander, M.
Linear Numeration Systems, Finite Beta Expansions, and Discrete Spectrum of Substitution Dynamical Systems
Thèse, University of Washington (1996)
93
Hubert, P. and Messaoudi, A.
Best simultaneous Diophantine approximations of Pisot numbers and Rauzy fractals
Acta Arith. 124 (2006) 1–15
Math Reviews MR2262136
94
Ito, S.
Simultaneous approximations and dynamical systems (on the simultaneous approximation of (,2) satisfying 3+k-1=0)
Sūrikaisekikenkyūsho Kōkyūroku 958 (1996) 59–61
Math Reviews MR1 468 000
95
Ito, S. and Fujii, J. and Higashinoand, H. and Yasutomi, Shin-Ichi
On simultaneous approximation to (,2) with 3+k-1=0
J. Number Theory 99 (2003) 255–283
Math Reviews MR1968452
96
Ito, S. and Kimura, M.
On Rauzy fractal
Japan J. Indust. Appl. Math. 8 (1991) 461–486
Math Reviews MR93d:11084
97
Ito, S. and Ohtsuki, M.
Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms
Tokyo J. Math. 16 (1993) 441–472
Math Reviews MR1247666
98
Ito, S. and Ohtsuki, M.
Parallelogram tilings and Jacobi-Perron algorithm
Tokyo J. Math. 17 (1994) 33–58
Math Reviews MR1279568
99
Ito, S. and Rao, Hui
Purely periodic -expansion with Pisot base
Proc. Amer. Math. Soc. 133 (2005) 953–964
100
Ito, S. and Rao, Hui
Atomic surfaces, tilings and coincidences I. Irreducible case
Israel J. Math. 153 (2006) 129–155
101
Kalle, C. and Steiner, W.
Beta-expansions, natural extensions and multiple tilings
Trans. Amer. Math. Soc. (2010) in press
102
van Kampen, E. R.
On some characterizations of 2-dimensional manifolds
Duke Math. J. 1 (1935) 74–93
103
Keane, Michael
Interval exchange transformations
Math. Z. 141 (1975) 25–31
Math Reviews MR0357739
104
Kellendonk, J. and Putnam, I.
Tilings, C^*-algebras, and K-theory
in Directions in mathematical quasicrystals
AMS CRM Monogr. Ser. 13 (2000) 177–206
105
Kenyon, Richard and Vershik, Anatoly
Arithmetic construction of sofic partitions of hyperbolic toral automorphisms
Ergodic Theory Dynam. Systems 18 (1998) 357–372
Math Reviews MR1619562
106
Kuratowski, K.
Topology. Vol. II
Academic Press, 1968
107
Lagarias, J. C. and Wang, Y.
Self affine tiles in ^n
Adv. Math. 121 (1996) 21–49
108
Lagarias, J. C. and Wang, Y.
Substitution Delone sets
Discrete Comput. Geom. 29 (2003) 175–209
109
Le Borgne, Stéphane
Un codage sofique des automorphismes hyperboliques du tore
in Séminaires de Probabilités de Rennes (1995)
Publ. Inst. Rech. Math. Rennes 1995 (1995) 35
110
Le Borgne, Stéphane
Un codage sofique des automorphismes hyperboliques du tore
C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 1123–1128
Math Reviews MR1423437
111
Le Borgne, Stéphane
Un codage sofique des automorphismes hyperboliques du tore
Bol. Soc. Brasil. Mat. (N.S.) 30 (1999) 61–93
112
Lee, J.-Y. and Moody, R. V. and Solomyak, B.
Pure point dynamical and diffraction spectra
Ann. Henri Poincaré 3 (2002) 1003–1018
Math Reviews MR1937612
113
Lind, Douglas and Marcus, Brian
An introduction to symbolic dynamics and coding
Cambridge Univ. Press, 1995
Math Reviews MR1369092
114
Livshits, A. N.
On the spectra of adic transformations of Markov compacta
Uspekhi Mat. Nauk 42 (1987) 189–190
115
Livshits, A. N.
Some examples of adic transformations and automorphisms of substitutions
Selecta Math. Soviet. 11 (1992) 83–104
116
Loridant, B. and Thuswaldner, J. M.
Interior components of a tile associated to a quadratic canonical number system
Topology Appl. 155 (2008) 667–695
117
Lothaire, M.
Applied combinatorics on words
Cambridge Univ. Press, 2005
118
Luck, J. M. and Godrèche, C. and Janner, T. A. and Janssen
The nature of the atomic surfaces of quasiperiodic self-similar structures
J. Phys. A 26 (1993) 1951–1999
Math Reviews MR94a:82049
119
Luo, J.
A note on a self-similar tiling generated by the minimal Pisot number
Fractals 10 (2002) 335–339
120
Luo, J. and Akiyama, Shigeki and Thuswaldner, J. M.
On the boundary connectedness of connected tiles
Math. Proc. Cambridge Philos. Soc. 137 (2004) 397–410
121
Luo, J. and Rao, Hui and Tan, B.
Topological Structure Of Self-Similar Sets
Fractals 10 (2002) 223–227
122
Luo, J. and Thuswaldner, J. M.
On the fundamental group of self-affine plane tiles
Ann. Inst. Fourier (Grenoble) 56 (2006) 2493–2524
123
Luo, J. and Zhou, Z.-L.
Disk-like tiles derived from complex bases
Acta Math. Sin. (Engl. Ser.) 20 (2004) 731–738
124
Mauldin, R. D. and Williams, S. C.
Hausdorff dimension in graph directed constructions
Trans. Amer. Math. Soc. 309 (1988) 811–829
Math Reviews MR89i:28003
125
Messaoudi, A.
Propriétés arithmétiques et dynamiques du fractal de Rauzy
J. Théor. Nombres Bordeaux 10 (1998) 135–162
Math Reviews MR2002c:11091
126
Messaoudi, A.
Frontière du fractal de Rauzy et système de numération complexe
Acta Arith. 95 (2000) 195–224
Math Reviews MR2001m:11131
127
Messaoudi, A.
Propriétés arithmétiques et topologiques d'une classe d'ensembles fractales
Acta Arith. 121 (2006) 341–366
128
Moody, R. V.
Model sets: a survey
in From Quasicrystals to More Complex Systems
(2000) 145–166
129
Morse, Harold Marston
Recurrent geodesics on a surface of negative curvature
Trans. Amer. Math. Soc. 22 (1921) 84–100
Math Reviews MR1501161
130
Mossé, Brigitte
Recognizability of substitutions and complexity of automatic sequences
Bull. Soc. Math. Fr. 124 (1996) 329-346
131
Ngai, Sze-Man and Nguyen, Nhu
The Heighway dragon revisited
Discrete Comput. Geom. 29 (2003) 603–623
132
Ngai, Sze-Man and Tang, Tai-Man
A technique in the topology of connected self-similar tiles
Fractals 12 (2004) 389–403
133
Ngai, Sze-Man and Tang, Tai-Man
Topology of connected self-similar tiles in the plane with disconnected interiors
Topology Appl. 150 (2005) 139–155
134
Parry, W.
On the -expansion of real numbers
Acta Math. Acad. Sci. Hungar. 11 (1960) 401–416
135
Praggastis, B.
Numeration systems and Markov partitions from self-similar tilings
Trans. Amer. Math. Soc. 351 (1999) 3315–3349
Math Reviews MR99m:11009
136
Priebe-Franck, Nathalie
A primer of substitution tilings of the Euclidean plane
Expo. Math. 26 (2008) 295–326
137
Qu, Yan-Hui and Rao, Hui and Yang, Ya-Min
Periods of -expansions and linear recurrent sequences
Acta Arith. 120 (2005) 27–37
Math Reviews MR2189716
138
Queffélec, M.
Substitution dynamical systems—spectral analysis
Lecture Notes in Mathematics, 1294. Springer, 1987
Math Reviews MR89g:54094
139
Radin, C.
Space tilings and substitutions
Geom. Dedicata 55 (1995) 257–264
140
Rauzy, G.
Nombres algébriques et substitutions
Bull. Soc. Math. France 110 (1982) 147–178
141
Reveillès, J.-P.
Géométrie discrète, calcul en nombres entiers et algorithmique
Thèse, Université Louis Pasteur, Strasbourg (1991)
142
Rigo, M. and Steiner, W.
Abstract -expansions and ultimately periodic representations
J. Number Theory 17 (2005) 283–299
143
Roy, Damien
Approximation to real numbers by cubic algebraic integers. II
Ann. of Math. 158 (2003) 1081–1087
Math Reviews MR2031862
144
Rudin, Walter
Some theorems on Fourier coefficients
Proc. Amer. Math. Soc. 10 (1959) 855–859
145
Sadahiro, T.
Multiple points of tilings associated with Pisot numeration systems
Theoret. Comput. Sci. 359 (2006) 133–147
Math Reviews MR2251606
146
Sano, Y. and Arnoux, P. and Ito, S.
Higher dimensional extensions of substitutions and their dual maps
J. Anal. Math. 83 (2001) 183–206
Math Reviews MR1828491
147
Scheicher, Klaus and Thuswaldner, J. M.
Canonical number systems, counting automata and fractals
Math. Proc. Cambridge Philos. Soc. 133 (2002) 163–182
Math Reviews MR1900260
148
Schmidt, K.
On periodic expansions of Pisot numbers and Salem numbers
Bull. London Math. Soc. 12 (1980) 269–278
Math Reviews MR82c:12003
149
Schmidt, K.
Algebraic coding of expansive group automorphisms and two-sided beta-shifts
Monatsh. Math. 129 (2000) 37–61
Math Reviews MR1741033
150
Schmidt, K.
Algebraic coding of expansive group automorphisms and two-sided beta-shifts
Monatsh. Math. 129 (2000) 37–61
Math Reviews MR2001f:54043
151
Senechal, Marjorie
What isa quasicrystal?
Notices Amer. Math. Soc. 53 (2006) 886–887
Math Reviews MR2253164
152
Siegel, A.
Représentation des systèmes dynamiques substitutifs non unimodulaires
Ergodic Theory Dynam. Systems 23 (2003) 1247–1273
Math Reviews MR1997975
153
Siegel, A.
Pure discrete spectrum dynamical system and periodic tiling associated with a substitution
Ann. Inst. Fourier (Grenoble) 54 (2004) 341–381
154
Sirvent, V. F.
Geodesic laminations as geometric realizations of Pisot substitutions
Ergodic Theory Dynam. Systems 20 (2000) 1253–1266
Math Reviews MR2001g:37041
155
Sirvent, V. F. and Solomyak, B.
Pure discrete spectrum for one-dimensional substitution systems of Pisot type
Canad. Math. Bull. 45 (2002) 697–710
156
Sirvent, V. F. and Wang, Y.
Self-affine tiling via substitution dynamical systems and Rauzy fractals
Pacific J. Math. 206 (2002) 465–485
Math Reviews MR2003g:37026
157
Smale, S.
Differentiable dynamical systems
Bull. Amer. Math. Soc. 73 (1967) 747–817
Math Reviews MR0228014
158
de Smit, Bart
The fundamental group of the Hawaiian earring is not free
Internat. J. Algebra Comput. 2 (1992) 33–37
Math Reviews MR1167526
159
Solomyak, B.
Dynamics of self-similar tilings
Ergodic Theory Dynam. Systems 17 (1997) 695–738
160
Solomyak, B.
Tilings and Dynamics
in EMS Summer School on Combinatorics, Automata and Number Theory
(2006)
161
Steiner, W.
Digital expansions and the distribution of related functions
Thèse, TU Vienna (2000) http://www.liafa.jussieu.fr/~steiner/
162
Thue, A.
Über unendliche Zeichenreihen
Norske Vid. Selsk. Skr. Mat. Nat. Kl. 37 (1906) 1–22
163
Thue, A.
Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen
Norske Vid. Selsk. Skr. Mat. Nat. Kl. 43 (1912) 1–67
164
Thurston, W. P.
Groups, tilings and finite state automata
(1989)
165
Thuswaldner, J. M.
Unimodular Pisot substitutions and their associated tiles
J. Théor. Nombres Bordeaux 18 (2006) 487–536
166
Veech, William A.
Interval exchange transformations
J. Anal. Math. 33 (1978) 222–272
Math Reviews MR516048
167
Williams, R. F.
Classification of one dimensional attractors
in Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968)
(1970) 341–361
Math Reviews MR0266227
168
Yasutomi, Shin-Ichi
On Sturmian sequences which are invariant under some substitutions
in Number theory and its applications (Kyoto, 1997)
Dev. Math. 2 (1999) 347–373