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Reconstructing a surface from the knowledge
of only some of its points: a problem that one comes across often,

be it in geological exploration, in recording archaeological remains,
or in medical or industrial imaging. 

w hen we probe the ground in some
places to find out the configuration of various
geological layers underneath, or when we
want to map the sea-bed, the number of points
where measurements are made is necessarily
finite. The corresponding surfaces need to be
reconstructed starting from this limited
amount of data. The situation is similar for all
computerised imaging systems (scanners,
remote-sensors, three-dimensional imaging,
etc.) used in medicine, in industry, in archaeo-
logy, etc. The starting point is a real object - 

which can be a part of the human body, a
machine part, an archaeological remain, a geo-
logical structure, or something else.
Instruments can measure this real object only
at a certain number of points from which we
have to reconstruct the shape of the object
virtually. This is the problem of reconstructing
surfaces (Figure 1). It thus consists in using a
finite number of points to provide a geome-
trical or a computer representation of the
object which will allow us to visualise it on a
screen, to store it in the memory of a compu-
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Figure 1. The reconstruction of a surface starting from a sample of its points: this problem arises in various fields.



ter, to easily carry out calculations, even to
modify the object or to give instructions by
remote control to get a copy tooled. In short,
once the form of a real object is digitally recor-
ded with sufficient precision, there are many
possibilities for action and calculation

The economic and industrial stakes invol-
ved in the problem of surface reconstruction,
and its fundamental character from a scienti-
fic point of view, have led to many works devo-
ted to it for some twenty years. But it is only
very recently that the specialists have forma-
lised the problem in mathematical terms,
which enabled them to conceive efficient algo-
rithms furnishing a faithful reconstruction.
The results of this so-called algorithmic geo-
metry were transferred very rapidly to indus-
try through the creation of young start-ups
(such as Raindrop Geomagic in the United
States), or by launching new products by the
leaders in computer-assisted design or in medi-
cal imaging (Dassault Systèmes, Medical
Siemens).

Voronoï diagrams and Delaunay tri-
angulations, two essential geometric
tools

For reconstructing a surface from a mass
of sample points, a large majority of algorithms
use a central tool in algorithmic geometry:
Delaunay triangulation, named after Boris
Delone (1890-1980), a Russian mathematician
whose name was rendered as Delaunay in
French. A Delaunay triangulation is defined in
a natural way starting from what is called a
Voronoï diagram, after the name of the
Ukrainian mathematician Georgi Voronoï
(1868-1908). Let us consider a finite set of points
in space and call it E. The Voronoï diagram of

E is a division of space into convex cells (shown
in blue in Figure 2) where each cell consists of
the points of space closer to a certain point of
E than to any other point of E. Cells - they are
convex polyhedra - are thus defined in a unique
manner.

Now, let us connect by line segments the
points of E whose Voronoï cells are adjacent.
The set of these segments constitutes the
Delaunay triangulation (shown in green in
Figure 2) associated to E. These structures can
be defined in spaces of arbitrary dimension;
it is the case dimension three - of the usual
space - which is the most interesting one for
surface reconstruction. Voronoï diagrams
(Figures 2 and 3) are among the main subjects
of study in algorithmic geometry, and it is in
the 1980’s that their relationship with the
theory of polytopes (analogues of polyhedra
in spaces of dimension higher than three) was
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Figure 2. The Voronoï diagram (in blue) and Delaunay triangula-
tion (in green) of a set of points (marked in red). Voronoï diagrams
and Delaunay triangulations are fundamental tools in algorithmic
geometry.



established. Their study in the context of sur-
face sampling is much more recent.

Why are Voronoï diagrams and Delaunay
triangulations interesting ? If E is a sample of
n points taken on some surface S, one can
show that the corresponding Voronoï diagram
and Delaunay triangulation contain a lot of
information about this surface. When the
sample is sufficiently dense, it can be shown
to provide a precise approximation of the sur-
face. For example, the vector which joins a
point P of E to the most distant vertex of its
Voronoï cell is a good approximation of the
normal on surface S at point P.

One should ensure that calculation
times remain reasonable, that the
algorithms are reliable

Several reconstruction algorithms are now
known capable of constructing a surface S'
which correctly approximates the real surface
S starting from a finite sample of points on S.
What's more, the theory of these algorithms
allows one to calculate an upper boundary for
the difference between S' and S', a boundary
which obviously depends on the sampling den-
sity.

As the data sets provided by measuring ins-
truments generally contain several hundreds
of thousands - even millions - of points, com-
binatorial and algorithmic questions play a cri-
tical role. It is, for example, important to know
if the quantity of calculations which Delaunay
triangulations require will remain within a rea-
sonable limit or not. In the most unfavourable
cases, the number T of calculation steps (i.e., in
the final analysis, the computation time) can
be quadratic; in other words, T is, at worst, pro-

portional to the square of the number of sample
points. It is, however, assumed that this situa-
tion does not arise in the case of well-sampled
surfaces. More precise results were very recently
obtained in the case of polyhedric surfaces S,
i.e. surfaces composed only of polygonal faces:
for such surfaces and under weak sampling
conditions, the size of the calculation for com-
puting the triangulation is at worst proportio-
nal to the number of sample points. The case
of smooth surfaces is more delicate; it is cur-
rently the object of active research.

The theoretical bounds are not all; it
remains to know how to efficiently and rapidly
calculate the triangulation from a data set.
Many algorithms are known. The more effi-
cient ones are called randomised because they
carry out certain random samplings during
their execution. The theory of randomised
algorithms developed very rapidly in the 1990’s

and has led to precise analyses validated by
experiments. In many cases, and the calcula-
tion of the Delaunay triangulation is one of
them, the introduction of an element of ran-
domness allows one not to try optimally to
solve the worst case (which is very improbable),
and has led to simple and very efficient algo-
rithms on the average. One can thus treat
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Figure 3. The Voronoï diagram of a set of points on a curve.
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samples of 100000 points in some ten seconds
(Pentium III with 500 MHz).

If it is important to calculate rapidly, to cal-
culate reliably is even more important. This is
a delicate question because, in general, com-
puters only know how to represent numbers
with a finite precision (a finite number of deci-
mals). Thus it is impossible to give a represen-
tation of numbers having infinitely many deci-
mals such as π or √2, which would be at the
same time digital and exact. The accumulation
of round-off errors can lead to the abnormal
behaviour of the programs. Although this
behaviour is well known, it is difficult to
control, which makes writing and maintaining
reliable algorithms very expensive. A signifi-
cant part of current research in algorithmic
geometry is related to these questions and
combines the theory of algorithms, formal
computation (wherein the computer handles
symbols and not explicit numbers) and com-
puter arithmetic. It has already led to the deve-
lopment of software libraries which have made
programming easy, efficient and reliable, such
as the library CGAL (Computational Geometry
Algorithms Library) developed by an interna-
tional collaboration of universities and research
organisations.
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