Catalogue et commandes en ligne (paiement sécurisé, VISA ou MASTERCARD uniquement)

Revues disponibles par abonnement

Annales scientifiques de l'ENS

Astérisque

Bulletin de la SMF

Mémoires de la SMF

Revue d'Histoire des Mathématiques

Gazette des Mathématiciens

Séries de livres

Astérisque

Cours Spécialisés

Documents Mathématiques

Mémoires de la SMF

Panoramas et Synthèses

Séminaires et Congrès

Série Chaire Jean Morlet

SMF/AMS Texts and Monographs

La Série T

Fascicules « Journée Annuelle »

Autres livres

Donald E. Knuth - traductions françaises

Rééditions du Séminaire Nicolas Bourbaki

Rééditions des Œuvres de Jean Leray

Revue de l'Institut Elie Cartan

Editions électroniques

Annales scientifiques de l'ENS

Bulletin de la SMF

Revue d'Histoire des Mathématiques

Séminaires et Congrès

Plus d'information / Abonnement

Publications grand public

L'explosion des mathématiques (smf.emath.fr)

Mathématiques L'explosion continue (smf.emath.fr)

Zoom sur les métiers des maths (smf.emath.fr)

Zoom sur les métiers des mathématiques et de l'informatique (smf.emath.fr)

Où en sont les mathématiques ?

La Série T

Pour les auteurs

Soumission des manuscrits

Formats et documentation

Plus d'info

Liste de diffusion électronique (smf.emath.fr)

Information pour les libraires et diffuseurs (smf.emath.fr)

Publications de la SMF
fr en
Votre numéro IP : 54.158.50.26
Accès aux édit. élec. : SémCong

Cours spécialisés

Présentation de la publication

Parutions

Dernières parutions

Comité de rédaction / Secrétariat

Volume :

Faire une recherche


Catalogue & commande

Cours spécialisés - Parutions - 19 (2013)

Parutions

Transformations birationnelles de petit degré
Dominique Cerveau, Julie Déserti
Cours spécialisés 19 (2013), viii+ 223 pages
Acheter l'ouvrage

Résumé :
Depuis la fin du XIX^e siècle on sait que toute transformation birationnelle du plan projectif complexe dans lui-même, encore appelée transformation de Cremona, s'écrit comme la composée de transformations birationnelles quadratiques; ceci a motivé notre travail qui porte essentiellement sur ces transformations. Nous établissons des propriétés de type algébriques comme la classification des groupes à un paramètre de transformations de Cremona quadratiques ou encore la lissité de l'espace des transformations birationnelles de degré 2 dans l'espace des transformations rationnelles: ceci nécessite une étude détaillée de l'action de (PGL_3(C))^2 sur cet espace. On peut aussi voir qu'un nombre fini de transformations de Cremona quadratiques choisies génériquement engendrent un groupe libre. Par ailleurs nous montrons que si f est une transformation birationnelle de degré 2 ou un automorphisme non trivial du plan projectif complexe, le sous-groupe normal engendré par f est le groupe des transformations de Cremona tout entier; nous en déduisons que ce groupe est parfait. Nous démontrons aussi des propriétés de nature dynamique: en suivant une idée de Guillot nous implantons aux transformations birationnelles de degré 2 des invariants propres aux feuilletages ce qui nous permet par exemple d'obtenir l'énoncé suivant: si deux transformations de Cremona quadratiques génériques sont birationnellement conjuguées, elle le sont linéairement; nous nous intéressons aussi à la présence ou non « d'objets invariants » : courbes, feuilletages, fibrations. Nous étudions aussi les transformations de Cremona cubiques; en considérant les différentes configurations possibles de courbes contractées nous en donnons « la classification ». Ceci nous permet de montrer que l'ensemble des transformations birationnelles exactement de degré 3 est irréductible, et en fait rationnellement connexe.

Abstract:
Birational transformations of small degree
Since the end of the XIXth century, we know that each birational map of the complex projective plane is the product of a finite number of quadratic birational maps of the projective plane; this motivates our work which essentially deals with these quadratic maps. We establish algebraic properties such as the classification of one parameter groups of quadratic birational maps or the smoothness of the set of quadratic birational maps in the set of rational maps. We prove that a finite number of generic quadratic birational maps generates a free group. We show that if f is a quadratic birational map or an automorphism of the projective plane, the normal subgroup generated by f is the full group of birational maps of the projective plane, which implies that this group is perfect. We study some dynamical properties: following an idea of Guillot, we translate some invariants for foliations in our context, in particular we obtain that if two generic quadratic birational maps are birationally conjugate, then they are conjugate by an automorphism of the projective plane. We are also interested in invariant objects; curves, foliations, fibrations. We study birational maps of degree 3 and, by considering the different possible configurations of the exceptional curves, we give the ``classification'' of these maps. We can deduce from it that the set of the birational maps of degree 3 exactly is irreducible, in fact rationally connected.

Keywords: Cremona group, rational map, birational map, algebraic foliation, birational flow, dynamical degree, algebraic stability.

Class. math. : 14E07, 14E05, 37F10, 37F50


ISBN : 978-2-85629-770-4
ISSN : 1284-6090
Publié avec le concours de : Institut universitaire de France