Catalogue et commandes en ligne (paiement sécurisé, VISA ou MASTERCARD uniquement)

Revues disponibles par abonnement

Annales scientifiques de l'ENS

Astérisque

Bulletin de la SMF

Mémoires de la SMF

Revue d'Histoire des Mathématiques

Gazette des Mathématiciens

Séries de livres

Astérisque

Cours Spécialisés

Documents Mathématiques

Mémoires de la SMF

Panoramas et Synthèses

Séminaires et Congrès

Série Chaire Jean Morlet

SMF/AMS Texts and Monographs

La Série T

Fascicules « Journée Annuelle »

Autres livres

Donald E. Knuth - traductions françaises

Rééditions du Séminaire Nicolas Bourbaki

Rééditions des Œuvres de Jean Leray

Revue de l'Institut Elie Cartan

Editions électroniques

Annales scientifiques de l'ENS

Bulletin de la SMF

Revue d'Histoire des Mathématiques

Séminaires et Congrès

Plus d'information / Abonnement

Publications grand public

L'explosion des mathématiques (smf.emath.fr)

Mathématiques L'explosion continue (smf.emath.fr)

Zoom sur les métiers des maths (smf.emath.fr)

Zoom sur les métiers des mathématiques et de l'informatique (smf.emath.fr)

Où en sont les mathématiques ?

La Série T

Pour les auteurs

Soumission des manuscrits

Formats et documentation

Plus d'info

Liste de diffusion électronique (smf.emath.fr)

Information pour les libraires et diffuseurs (smf.emath.fr)

Publications de la SMF
fr en
Votre numéro IP : 54.82.79.137
Accès aux édit. élec. : SémCong

Bulletin de la SMF

Présentation de la publication

Parutions

Dernières parutions

Comité de rédaction / Secrétariat

Volume :

Faire une recherche


Catalogue & commande

Bulletin de la SMF - Parutions - 134 - pages 395-415

Parutions134

Sur le groupe des classes d'un schéma arithmétique
Bruno Kahn
Bulletin de la Société mathématique de France 134, fascicule 3 (2006), 395-415
Télécharger cet article : fichier PS / fichier PDF

Résumé :
Nous donnons une démonstration du fait que le groupe des classes d'un schéma irréductible de type fini sur $\operatorname {Spec} \mathbf {Z} $ est de type fini. Cette preuve ne repose pas sur le théorème de Mordell-Weil-Néron, mais plutôt sur le théorème de Mordell-Weil classique, le théorème de Néron-Severi et les théorèmes de Hironaka et de Jong sur la résolution des singularités. Nous en déduisons quelques corollaires, parmi lesquels le théorème de Mordell-Weil-Néron lui-même.

Mots clefs : Géométrie arithmétique, résolution des singularités, variétés abéliennes, groupe des classes, groupe de Brauer

Abstract:
On the class group of an arithmetic scheme
We present a proof that the class group of an irreducible scheme of finite type over $\operatorname {Spec} \mathbf {Z} $ is finitely generated. This proof does not rely on the Mordell-Weil-Néron theorem but rather on the classical Mordell-Weil theorem, the Néron-Severi theorem and Hironaka and de Jong's theorems on resolution of singularities. We derive some corollaries, including the Mordell-Weil-Néron theorem itself.

Key words: Arithmetic geometry, resolution of singularities, abelian varieties, class group, Brauer group

Class. math. : 11G99, 14F22, 14E15, 14G99, 14K99


ISSN : 0037-9484
Publié avec le concours de : Centre National de la Recherche Scientifique