Catalogue et commandes en ligne (paiement sécurisé, VISA ou MASTERCARD uniquement)

Revues disponibles par abonnement

Annales scientifiques de l'ENS

Astérisque

Bulletin de la SMF

Mémoires de la SMF

Revue d'Histoire des Mathématiques

Gazette des Mathématiciens

Séries de livres

Astérisque

Cours Spécialisés

Documents Mathématiques

Mémoires de la SMF

Panoramas et Synthèses

Séminaires et Congrès

Série Chaire Jean Morlet

SMF/AMS Texts and Monographs

La Série T

Fascicules « Journée Annuelle »

Autres livres

Donald E. Knuth - traductions françaises

Rééditions du Séminaire Nicolas Bourbaki

Rééditions des Œuvres de Jean Leray

Revue de l'Institut Elie Cartan

Editions électroniques

Annales scientifiques de l'ENS

Bulletin de la SMF

Revue d'Histoire des Mathématiques

Séminaires et Congrès

Plus d'information / Abonnement

Publications grand public

L'explosion des mathématiques (smf.emath.fr)

Mathématiques L'explosion continue (smf.emath.fr)

Zoom sur les métiers des maths (smf.emath.fr)

Zoom sur les métiers des mathématiques et de l'informatique (smf.emath.fr)

Où en sont les mathématiques ?

La Série T

Pour les auteurs

Soumission des manuscrits

Formats et documentation

Plus d'info

Liste de diffusion électronique (smf.emath.fr)

Information pour les libraires et diffuseurs (smf.emath.fr)

Publications de la SMF
fr en
Votre numéro IP : 54.82.79.137
Accès aux édit. élec. : SémCong

Bulletin de la SMF

Présentation de la publication

Parutions

Dernières parutions

Comité de rédaction / Secrétariat

Volume :

Faire une recherche


Catalogue & commande

Bulletin de la SMF - Parutions - 134 - pages 287-325

Parutions134

Invariants of real symplectic four-manifolds out of reducible and cuspidal curves
Jean-Yves Welschinger
Bulletin de la Société mathématique de France 134, fascicule 2 (2006), 287-325
Acheter l'ouvrage
Télécharger cet article : fichier PS / fichier PDF

Résumé :
Courbes réductibles, cuspidales et invariants des variétés symplectiques réelles de dimension quatre
Nous construisons des invariants par déformation des variétés symplectiques réelles de dimension quatre. Ces invariants sont obtenus en comptant trois différents types de courbes J-holomorphes rationnelles réelles qui réalisent une classe d'homologie donnée et passent par une configuration réelle donnée d'un nombre (adéquat) de points. Ces courbes sont des courbes cuspidales, réductibles et des courbes ayant une tangente prescrite en l'un des points de la configuration. Elles sont comptées en fonction d'un signe qui dépend de la parité du nombre de leurs points doubles réels isolés et, dans le cas des courbes réductibles, en fonction d'une multiplicité. Dans le cas du plan projectif complexe muni de ses formes symplectiques et structures réelles standards, ces invariants coincident avec ceux précédemment construits dans [Welschinger 2005]. Ceci mène à une relation entre le comptage de courbes J-holomorphes rationnelles réelles réalisé dans [Welschinger 2005] et le comptage de courbes J-holomorphes rationnelles réductibles réelles présenté ici.

Mots clefs : Variété symplectique réelle, courbe rationnelle, géométrie énumérative

Abstract:
We construct invariants under deformation of real symplectic four-manifolds. These invariants are obtained by counting three different kinds of real rational J-holomorphic curves which realize a given homology class and pass through a given real configuration of (the appropriate number of) points. These curves are cuspidal curves, reducible curves and curves with a prescribed tangent line at some real point of the configuration. They are counted with respect to some sign defined by the parity of their number of isolated real double points and in the case of reducible curves, with respect to some mutiplicity. In the case of the complex projective plane equipped with its standard symplectic form and real structure, these invariants coincide with the ones previously constructed in [Welschinger 2005]. This leads to a relation between the count of real rational J-holomorphic curves done in [Welschinger 2005] and the count of real rational reducible J-holomorphic curves presented here.

Key words: Real symplectic manifold, rational curve, enumerative geometry

Class. math. : 53D45, 14N35, 14N10, 14P99


ISSN : 0037-9484
Publié avec le concours de : Centre National de la Recherche Scientifique