Catalogue et commandes en ligne (paiement sécurisé, VISA ou MASTERCARD uniquement)

Revues disponibles par abonnement

Annales scientifiques de l'ENS

Astérisque

Bulletin de la SMF

Mémoires de la SMF

Revue d'Histoire des Mathématiques

Gazette des Mathématiciens

Séries de livres

Astérisque

Cours Spécialisés

Documents Mathématiques

Mémoires de la SMF

Panoramas et Synthèses

Séminaires et Congrès

Série Chaire Jean Morlet

SMF/AMS Texts and Monographs

La Série T

Fascicules « Journée Annuelle »

Autres livres

Donald E. Knuth - traductions françaises

Rééditions du Séminaire Nicolas Bourbaki

Rééditions des Œuvres de Jean Leray

Revue de l'Institut Elie Cartan

Editions électroniques

Annales scientifiques de l'ENS

Bulletin de la SMF

Revue d'Histoire des Mathématiques

Séminaires et Congrès

Plus d'information / Abonnement

Publications grand public

L'explosion des mathématiques (smf.emath.fr)

Mathématiques L'explosion continue (smf.emath.fr)

Zoom sur les métiers des maths (smf.emath.fr)

Zoom sur les métiers des mathématiques et de l'informatique (smf.emath.fr)

Où en sont les mathématiques ?

La Série T

Pour les auteurs

Soumission des manuscrits

Formats et documentation

Plus d'info

Liste de diffusion électronique (smf.emath.fr)

Information pour les libraires et diffuseurs (smf.emath.fr)

Publications de la SMF
fr en
Votre numéro IP : 54.82.79.137
Accès aux édit. élec. : SémCong

Bulletin de la SMF

Présentation de la publication

Parutions

Dernières parutions

Comité de rédaction / Secrétariat

Volume :

Faire une recherche


Catalogue & commande

Bulletin de la SMF - Parutions - 134 - pages 269-286

Parutions134

Irregularity of an analogue of the Gauss-Manin systems
Céline Roucairol
Bulletin de la Société mathématique de France 134, fascicule 2 (2006), 269-286
Acheter l'ouvrage
Télécharger cet article : fichier PS / fichier PDF

Résumé :
Irrégularité d'un analogue des systèmes de Gauss-Manin
Dans la théorie des $\mathcal {D}$-modules, on définit les systèmes de Gauss-Manin par l'image directe par un morphisme du faisceau structural $\mathcal {O}$. Un résultat essentiel est leur régularité. On s'intéresse à l'irrégularité d'un analogue des systèmes de Gauss-Manin. Il s'agit de l'image directe $f_+(\mathcal {O}\mkern 2mu {\rm e}^g)$ par un polyôme f d'un $\mathcal {D}$-module tordu par une exponentielle d'un second polynôme g, où f et g sont des polynômes à deux variables. Les analogues des systèmes de Gauss-Manin peuvent avoir des singularités irrégulières. On exprimera alors un invariant attaché à l'irrégularité en $c\in 
\mathbb {P}
^1$ de ces systèmes à l'aide de la géométrie de l'application (f,g).

Mots clefs : connexion de Gauss-Manin, complexe d'irrégularité, image directe, $\mathcal {D}$-modules élémentaires

Abstract:
In $\mathcal {D}$-modules theory, Gauss-Manin systems are defined by the direct image of the structure sheaf $\mathcal {O}$ by a morphism. A major theorem says that these systems have only regular singularities. This paper examines the irregularity of an analogue of the Gauss-Manin systems. It consists in the direct image complex $f_+(\mathcal {O}\mkern 2mu {\rm e}^g)$ of a $\mathcal {D}$-module twisted by the exponential of a polynomial g by another polynomial f, where f and g are two polynomials in two variables. The analogue of the Gauss-Manin systems can have irregular singularities (at finite distance and at infinity). We express an invariant associated with the irregularity of these systems at $c\in 
\mathbb {P}
^1$ by the geometry of the map (f,g).

Key words: Gauss-Manin connection, irregularity complex, direct image, elementary $\mathcal {D}$-modules

Class. math. : 32S40, 32C38


ISSN : 0037-9484
Publié avec le concours de : Centre National de la Recherche Scientifique