Catalogue et commandes en ligne (paiement sécurisé, VISA ou MASTERCARD uniquement)

Revues disponibles par abonnement

Annales scientifiques de l'ENS

Astérisque

Bulletin de la SMF

Mémoires de la SMF

Revue d'Histoire des Mathématiques

Gazette des Mathématiciens

Séries de livres

Astérisque

Cours Spécialisés

Documents Mathématiques

Mémoires de la SMF

Panoramas et Synthèses

Séminaires et Congrès

Série Chaire Jean Morlet

SMF/AMS Texts and Monographs

La Série T

Fascicules « Journée Annuelle »

Autres livres

Donald E. Knuth - traductions françaises

Rééditions du Séminaire Nicolas Bourbaki

Rééditions des Œuvres de Jean Leray

Revue de l'Institut Elie Cartan

Editions électroniques

Annales scientifiques de l'ENS

Bulletin de la SMF

Revue d'Histoire des Mathématiques

Séminaires et Congrès

Plus d'information / Abonnement

Publications grand public

L'explosion des mathématiques (smf.emath.fr)

Mathématiques L'explosion continue (smf.emath.fr)

Zoom sur les métiers des maths (smf.emath.fr)

Zoom sur les métiers des mathématiques et de l'informatique (smf.emath.fr)

Où en sont les mathématiques ?

La Série T

Pour les auteurs

Soumission des manuscrits

Formats et documentation

Plus d'info

Liste de diffusion électronique (smf.emath.fr)

Information pour les libraires et diffuseurs (smf.emath.fr)

Publications de la SMF
fr en
Votre numéro IP : 54.82.79.137
Accès aux édit. élec. : SémCong

Bulletin de la SMF

Présentation de la publication

Parutions

Dernières parutions

Comité de rédaction / Secrétariat

Volume :

Faire une recherche


Catalogue & commande

Bulletin de la SMF - Parutions - 134 - pages 241-252

Parutions134

Kähler Manifolds with - Split Tangent Bundle
Marco Brunella - Jorge Vitório Pereira - Frédéric Touzet
Bulletin de la Société mathématique de France 134, fascicule 2 (2006), 241-252
Acheter l'ouvrage
Télécharger cet article : fichier PS / fichier PDF

Résumé :
Variétés kähleriennes à fibré tangent scindé
On étudie dans cet article les variétés kählériennes compactes dont le fibré tangent se décompose en somme directe de sous-fibrés. En particulier, on montre que si le fibré tangent se décompose en somme directe de sous-fibrés en droites, alors la variété est uniformisée par un produit de courbes. Les méthodes sont issues de la théorie des feuilletages de (co)dimension 1.

Mots clefs : Variétés Kählériennes, feuilletages holomorphes, uniformisation, intégrabilité.

Abstract:
This paper is concerned with compact Kähler manifolds whose tangent bundle splits as a sum of subbundles. In particular, it is shown that if the tangent bundle is a sum of line bundles, then the manifold is uniformised by a product of curves. The methods are taken from the theory of foliations of (co)dimension 1.

Key words: Kähler manifolds, holomorphic foliations, uniformisation, integrability.

Class. math. : 32Q30, 37F75, 53C12


ISSN : 0037-9484
Publié avec le concours de : Centre National de la Recherche Scientifique