Catalogue et commandes en ligne (paiement sécurisé, VISA ou MASTERCARD uniquement)

Revues disponibles par abonnement

Annales scientifiques de l'ENS

Astérisque

Bulletin de la SMF

Mémoires de la SMF

Revue d'Histoire des Mathématiques

Gazette des Mathématiciens

Séries de livres

Astérisque

Cours Spécialisés

Documents Mathématiques

Mémoires de la SMF

Panoramas et Synthèses

Séminaires et Congrès

Série Chaire Jean Morlet

SMF/AMS Texts and Monographs

La Série T

Fascicules « Journée Annuelle »

Autres livres

Donald E. Knuth - traductions françaises

Rééditions du Séminaire Nicolas Bourbaki

Rééditions des Œuvres de Jean Leray

Revue de l'Institut Elie Cartan

Editions électroniques

Annales scientifiques de l'ENS

Bulletin de la SMF

Revue d'Histoire des Mathématiques

Séminaires et Congrès

Plus d'information / Abonnement

Publications grand public

L'explosion des mathématiques (smf.emath.fr)

Mathématiques L'explosion continue (smf.emath.fr)

Zoom sur les métiers des maths (smf.emath.fr)

Zoom sur les métiers des mathématiques et de l'informatique (smf.emath.fr)

Où en sont les mathématiques ?

La Série T

Pour les auteurs

Soumission des manuscrits

Formats et documentation

Plus d'info

Liste de diffusion électronique (smf.emath.fr)

Information pour les libraires et diffuseurs (smf.emath.fr)

Publications de la SMF
fr en
Votre numéro IP : 54.234.228.185
Accès aux édit. élec. : SémCong

Bulletin de la SMF

Présentation de la publication

Parutions

Dernières parutions

Comité de rédaction / Secrétariat

Volume :

Faire une recherche


Catalogue & commande

Bulletin de la SMF - Parutions - 133 - pages 349-362

Parutions133

On the Pythagoras numbers of real analytic set germs
José F. Fernando - Jesús M. Ruiz
Bulletin de la Société mathématique de France 133, fascicule 3 (2005), 349-362
Acheter l'ouvrage
Télécharger cet article : fichier PS / fichier PDF

Résumé :
Sur le nombre de Pythagore des germes d'ensembles analytiques réels
Nous montrons : (i) que le nombre de Pythagore d'un germe d'ensemble analytique réel est le plus grand des nombres de Pythagore des courbes qu'il contient et (ii) que tout germe de courbe analytique réelle est contenu dans le germe d'une surface analytique réelle ayant le même nombre de Pythagore (ou le nombre 2 si la courbe est pythagoricienne). Cela fournit de nouveaux exemples et contre-exemples à propos des sommes de carrés et des germes de fonctions analytiques semi-définies.

Mots clefs : Nombres de Pythagore, somme de carrés, approximation d'Artin

Abstract:
We show that (i) the Pythagoras number of a real analytic set germ is the supremum of the Pythagoras numbers of the curve germs it contains, and (ii) every real analytic curve germ is contained in a real analytic surface germ with the same Pythagoras number (or Pythagoras number 2 if the curve is Pythagorean). This gives new examples and counterexamples concerning sums of squares and positive semidefinite analytic function germs.

Key words: Pythagoras number, sum of squares, M. Artin's approximation

Class. math. : 14P15


ISSN : 0037-9484
Publié avec le concours de : Centre National de la Recherche Scientifique