Catalogue et commandes en ligne (paiement sécurisé, VISA ou MASTERCARD uniquement)

Revues disponibles par abonnement

Annales scientifiques de l'ENS

Astérisque

Bulletin de la SMF

Mémoires de la SMF

Revue d'Histoire des Mathématiques

Gazette des Mathématiciens

Séries de livres

Astérisque

Cours Spécialisés

Documents Mathématiques

Mémoires de la SMF

Panoramas et Synthèses

Séminaires et Congrès

Série Chaire Jean Morlet

SMF/AMS Texts and Monographs

La Série T

Fascicules « Journée Annuelle »

Autres livres

Donald E. Knuth - traductions françaises

Rééditions du Séminaire Nicolas Bourbaki

Rééditions des Œuvres de Jean Leray

Revue de l'Institut Elie Cartan

Editions électroniques

Annales scientifiques de l'ENS

Bulletin de la SMF

Revue d'Histoire des Mathématiques

Séminaires et Congrès

Plus d'information / Abonnement

Publications grand public

L'explosion des mathématiques (smf.emath.fr)

Mathématiques L'explosion continue (smf.emath.fr)

Zoom sur les métiers des maths (smf.emath.fr)

Zoom sur les métiers des mathématiques et de l'informatique (smf.emath.fr)

Où en sont les mathématiques ?

La Série T

Pour les auteurs

Soumission des manuscrits

Formats et documentation

Plus d'info

Liste de diffusion électronique (smf.emath.fr)

Information pour les libraires et diffuseurs (smf.emath.fr)

Publications de la SMF
fr en
Votre numéro IP : 54.91.16.95
Accès aux édit. élec. : SémCong

Bulletin de la SMF

Présentation de la publication

Parutions

Dernières parutions

Comité de rédaction / Secrétariat

Volume :

Faire une recherche


Catalogue & commande

Bulletin de la SMF - Parutions - 130 - pages 493-506

Parutions130

Invariance of global solutions of the Hamilton-Jacobi equation
Ezequiel Maderna
Bulletin de la Société mathématique de France 130, fascicule 4 (2002), 493-506
Acheter l'ouvrage
Télécharger cet article : fichier PS / fichier PDF

Résumé :
Invariance des solutions globales de l'équation de Hamilton-Jacobi
On prouve que toute solution globale de viscosité de l'équation de Hamilton-Jacobi associée à un hamiltonien convexe et superlinéaire sur le fibré cotangent d'une variété fermée est toujours invariante sous l'action de la composante neutre du groupe de symétries du hamiltonien (on montre que ce groupe est un groupe de Lie compact). En particulier, toute section lagrangienne du fibré cotangent qui est preservée par le flot hamiltonien doit être invariante sous cette action.

Mots clefs : Hamilton-Jacobi, lagrangien, symétries

Abstract:
We show that every global viscosity solution of the Hamilton-Jacobi equation associated with a convex and superlinear Hamiltonian on the cotangent bundle of a closed manifold is necessarily invariant under the identity component of the group of symmetries of the Hamiltonian (we prove that this group is a compact Lie group). In particular, every Lagrangian section invariant under the Hamiltonian flow is also invariant under this group.

Key words: Hamilton-Jacobi, Lagrangian, symmetries

Class. math. : 49L25, 37J50, 53D12, 70H20


ISSN : 0037-9484
Publié avec le concours de : Centre National de la Recherche Scientifique