Catalogue et commandes en ligne (paiement sécurisé, VISA ou MASTERCARD uniquement)

Revues disponibles par abonnement

Annales scientifiques de l'ENS

Astérisque

Bulletin de la SMF

Mémoires de la SMF

Revue d'Histoire des Mathématiques

Gazette des Mathématiciens

Séries de livres

Astérisque

Cours Spécialisés

Documents Mathématiques

Mémoires de la SMF

Panoramas et Synthèses

Séminaires et Congrès

Série Chaire Jean Morlet

SMF/AMS Texts and Monographs

La Série T

Fascicules « Journée Annuelle »

Autres livres

Donald E. Knuth - traductions françaises

Rééditions du Séminaire Nicolas Bourbaki

Rééditions des Œuvres de Jean Leray

Revue de l'Institut Elie Cartan

Editions électroniques

Annales scientifiques de l'ENS

Bulletin de la SMF

Revue d'Histoire des Mathématiques

Séminaires et Congrès

Plus d'information / Abonnement

Publications grand public

L'explosion des mathématiques (smf.emath.fr)

Mathématiques L'explosion continue (smf.emath.fr)

Zoom sur les métiers des maths (smf.emath.fr)

Zoom sur les métiers des mathématiques et de l'informatique (smf.emath.fr)

Où en sont les mathématiques ?

La Série T

Pour les auteurs

Soumission des manuscrits

Formats et documentation

Plus d'info

Liste de diffusion électronique (smf.emath.fr)

Information pour les libraires et diffuseurs (smf.emath.fr)

Publications de la SMF
fr en
Votre numéro IP : 54.90.217.44
Accès aux édit. élec. : SémCong

Bulletin de la SMF

Présentation de la publication

Parutions

Dernières parutions

Comité de rédaction / Secrétariat

Volume :

Faire une recherche


Catalogue & commande

Bulletin de la SMF - Parutions - 124 - pages 299-327

Parutions124

Un théorème de Liouville pour les algèbres de Jordan
Wolfgang Bertram
Bulletin de la Société mathématique de France 124, fascicule 2 (1996), 299-327
Acheter l'ouvrage
Télécharger cet article : fichier PS / fichier PDF

Résumé :
Un théorème classique de Liouville décrit les transformations conformes d'un espace vectoriel euclidien. Nous généralisons ce théorème aux algèbres de Jordan simples (et non isomorphes à $
\mathbb 
R$ ou $
\mathbb 
C$). La première partie de la preuve est purement algébrique. Nous y montrons que l'algèbre de Lie du groupe de structure d'une algèbre de Jordan simple est de type fini et d'ordre 2. Dans la deuxième partie de la preuve nous en déduisons la description des transformations d'une algèbre de Jordan simple qui sont conformes par rapport au groupe de structure de l'algèbre de Jordan. Elles forment une groupe de Lie de transformations birationnelles qui est connu comme groupe de Kantor-Koecher-Tits, et nous pouvons caractériser ce groupe comme le groupe des transformations conformes de la complétion conforme de l'algèbre de Jordan.

Abstract:
We give a generalization for Jordan algebras of the classical Liouville theorem describing the conformal transformations of a euclidean vector space. In a first step we establish an infinitesimal version which is purely algebraic; namely, we show that the structure Lie algebra of a simple Jordan algebra (not isomorphic to $
\mathbb 
R$ or $
\mathbb 
C$) is of finite order 2. In a second step, using only elementary calculus and Lie theory, we deduce the global version describing the transformations of a simple Jordan algebra which are conformal with respect to the structure group of the Jordan algebra. It turns out that these transformations form a Lie group of birational transformations, also known as the Kantor-Koecher-Tits group, and we can characterize this group as the group of conformal transformations of the conformal closure of the Jordan algebra.

Class. math. : 17 B 70, 17 C 30, 34 A 26, 53 A 30, 53 C 10


ISSN : 0037-9484
Publié avec le concours de : Centre National de la Recherche Scientifique