Catalogue et commandes en ligne (paiement sécurisé, VISA ou MASTERCARD uniquement)

Revues disponibles par abonnement

Annales scientifiques de l'ENS

Astérisque

Bulletin de la SMF

Mémoires de la SMF

Revue d'Histoire des Mathématiques

Gazette des Mathématiciens

Séries de livres

Astérisque

Cours Spécialisés

Documents Mathématiques

Mémoires de la SMF

Panoramas et Synthèses

Séminaires et Congrès

Série Chaire Jean Morlet

SMF/AMS Texts and Monographs

La Série T

Fascicules « Journée Annuelle »

Autres livres

Donald E. Knuth - traductions françaises

Rééditions du Séminaire Nicolas Bourbaki

Rééditions des Œuvres de Jean Leray

Revue de l'Institut Elie Cartan

Editions électroniques

Annales scientifiques de l'ENS

Bulletin de la SMF

Revue d'Histoire des Mathématiques

Séminaires et Congrès

Plus d'information / Abonnement

Publications grand public

L'explosion des mathématiques (smf.emath.fr)

Mathématiques L'explosion continue (smf.emath.fr)

Zoom sur les métiers des maths (smf.emath.fr)

Zoom sur les métiers des mathématiques et de l'informatique (smf.emath.fr)

Où en sont les mathématiques ?

La Série T

Pour les auteurs

Soumission des manuscrits

Formats et documentation

Plus d'info

Liste de diffusion électronique (smf.emath.fr)

Information pour les libraires et diffuseurs (smf.emath.fr)

Publications de la SMF
fr en
Votre numéro IP : 54.81.195.140
Accès aux édit. élec. : SémCong

Annales scientifiques de l'ENS

Présentation de la publication

Parutions

Dernières parutions

Comité de rédaction / Secrétariat

Série 4 :
Série 3 :
Série 2 :
Série 1 :

Faire une recherche


Catalogue & commande

Annales scientifiques de l'ENS - Parutions - série 4, 51 (2018)

Parutions < série 4, 51

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE, série 4 51, fascicule 2 (2018)

Mihalis Dafermos, Igor Rodnianski, Yakov Shlapentokh-Rothman
A scattering theory for the wave equation on Kerr black hole exteriors
Annales scientifiques de l'ENS 51, fascicule 2 (2018), 371-486

Télécharger cet article : Fichier PDF

Résumé :
Une théorie de la diffusion pour l'équation d'onde sur les extérieurs du trou noir de Kerr
Nous développons une théorie de la diffusion définitive en espace physique pour l'équation scalaire d'onde dans la région extérieure de la métrique de Kerr dans le cas sous-extrémal général |a|<M. En particulier, nous prouvons des résultats qui correspondent à l'existence et l'unicité des états de diffusionet la complétude asymptotiqueet nous montrons de plus que la matrice de diffusion qui envoie les champs de radiation sur l'horizon passé et l'infini nul passé aux champs sur l'horizon futur et l'infini nul futur est un opérateur borné. Ce dernier point nous permet de donner une théorie de réflexion superradiante dans le domaine temporel. Le fait que la matrice de diffusion est bornée montre en particulier que l'amplification maximale de solutions associées aux paquets d'ondes entrants d'énergie finie sur l'infini nul passé est bornée. En fréquence, cela correspond à l'affirmation nouvelle que les coefficients de réflexion et de transmission, convenablement normalisés, sont bornés uniformément, indépendamment des paramètres de fréquence. Nous complétons ceci de plus avec une démonstration que la réflexion superradiante amplifie effectivement l'énergie rayonnée à l'infini nul futur, pour les paquets d'ondes appropriés comme ci-dessus. Les résultats font usage essentiel d'un raffinement de notre démonstration récente [30] de la bornitude et de la décroissance des solutions du problème de Cauchy de façon à s'appliquer à la classe de solutions où seulement une énergie dégénérée est supposée finie. Nous montrons en contraste que l'application de diffusion analogue ne peut pas être définie pour la classe de solutions d'énergie finie non dégénérée. C'est dû au fait que le célèbre effet de décalage vers le rouge agit comme une instabilité de décalage vers le bleu quand on résout l'équation d'onde rétrograde.

Mots-clefs : Théorie de la diffusion, équation d'onde, solution de Kerr, trous noirs.

Abstract:
We develop a definitive physical-space scattering theory for the scalar wave equation _g=0 on Kerr exterior backgrounds in the general subextremal case |a|<M. In particular, we prove results corresponding to “existence and uniqueness of scattering states” and “asymptotic completeness” and we show moreover that the resulting “scattering matrix” mapping radiation fields on the past horizon H^- and past null infinity I^- to radiation fields on H^+ and I^+ is a bounded operator. The latter allows us to give a time-domain theory of superradiant reflection. The boundedness of the scattering matrix shows in particular that the maximal amplification of solutions associated to ingoing finite-energy wave packets on past null infinity I^- is bounded. On the frequency side, this corresponds to the novel statement that the suitably normalized reflection and transmission coefficients are uniformly bounded independently of the frequency parameters. We further complement this with a demonstration that superradiant reflection indeed amplifies the energy radiated to future null infinity I^+ of suitable wave-packets as above. The results make essential use of a refinement of our recent proof [30] of boundedness and decay for solutions of the Cauchy problem so as to apply in the class of solutions where only a degenerate energy is assumed finite. We show in contrast that the analogous scattering maps cannot be defined for the class of finite non-degenerate energy solutions. This is due to the fact that the celebrated horizon red-shift effect acts as a blue-shift instability when solving the wave equation backwards.

Keywords: Scattering theory, wave equation, Kerr solution, black holes.

Class. math. : 83C57, 35P25, 35L05, 81Uxx.


ISSN : 0012-9593
Publié avec le concours de : Centre National de la Recherche Scientifique

Bibliographie:

1
Andersson, Lars and Blue, Pieter
Hidden symmetries and decay for the wave equation on the Kerr spacetime
Ann. of Math. 182 (2015) 787–853
Math Reviews MR3418531
2
Andersson, Lars and Blue, Pieter
Uniform energy bound and asymptotics for the Maxwell field on a slowly rotating Kerr black hole exterior
J. Hyperbolic Differ. Equ. 12 (2015) 689–743
Math Reviews MR3450059
3
Alexakis, Spyros and Schlue, Volker and Shao, Arick
Unique continuation from infinity for linear waves
Adv. Math. 286 (2016) 481–544
Math Reviews MR3415691
4
Alexakis, Spyros and Shao, Arick
Global uniqueness theorems for linear and nonlinear waves
J. Funct. Anal. 269 (2015) 3458–3499
Math Reviews MR3406859
5
Alinhac, S.
Geometric analysis of hyperbolic differential equations: An introduction
Cambridge Univ. Press, Cambridge, 2010
Math Reviews MR2666888
6
Andersson, N. and Laguna, P. and Papadopoulos, P.
Dynamics of scalar fields in the background of rotating black holes II: A note on superradiance
Phys. Rev. D 58 (1998) 087503
7
Aretakis, Stefanos
Decay of axisymmetric solutions of the wave equation on extreme Kerr backgrounds
J. Funct. Anal. 263 (2012) 2770–2831
Math Reviews MR2967306
8
Bachelot, Alain
Gravitational scattering of electromagnetic field by Schwarzschild black-hole
Ann. Inst. H. Poincaré Phys. Théor. 54 (1991) 261–320
Math Reviews MR1122656
9
Bachelot, Alain
Asymptotic completeness for the Klein-Gordon equation on the Schwarzschild metric
Ann. Inst. H. Poincaré Phys. Théor. 61 (1994) 411–441
Math Reviews MR1311537
10
Bachelot, Alain
Scattering of scalar fields by spherical gravitational collapse
J. Math. Pures Appl. 76 (1997) 155–210
Math Reviews MR1432372
11
Bachelot, Alain
The Hawking effect
Ann. Inst. H. Poincaré Phys. Théor. 70 (1999) 41–99
Math Reviews MR1671210
12
Bachelot, Alain
Superradiance and scattering of the charged Klein-Gordon field by a step-like electrostatic potential
J. Math. Pures Appl. 83 (2004) 1179–1239
Math Reviews MR2092306
13
Bachelot, Alain
Klein paradox and superradiance for the charged Klein-Gordon field
Sémin. Équ. Dériv. Partielles (2004) exp. 23
Math Reviews MR2117054
14
Baskin, Dean and Wang, Fang
Radiation fields on Schwarzschild spacetime
Comm. Math. Phys. 331 (2014) 477–506
Math Reviews MR3238522
15
Carter, Brandon
Hamilton-Jacobi and Schrödinger separable solutions of Einstein's equations
Comm. Math. Phys. 10 (1968) 280–310
Math Reviews MR0239841
16
Chandrasekhar, Subrahmanyan
The mathematical theory of black holes
The Clarendon Press, Oxford Univ. Press, New York, 1983
Math Reviews MR700826
17
Christodoulou, Demetrios
The action principle and partial differential equations
Princeton Univ. Press, Princeton, NJ, 2000
Math Reviews MR1739321
18
Dafermos, Mihalis
The interior of charged black holes and the problem of uniqueness in general relativity
Comm. Pure Appl. Math. 58 (2005) 445–504
Math Reviews MR2119866
19
20
21
22
Dafermos, Mihalis and Rodnianski, Igor
A proof of Price's law for the collapse of a self-gravitating scalar field
Invent. math. 162 (2005) 381–457
Math Reviews MR2199010
23
Dafermos, Mihalis and Rodnianski, Igor
The black hole stability problem for linear scalar perturbations
in Proceedings of the Twelfth Marcel Grossmann Meeting on General Relativity
(2011) 132–189
24
Dafermos, Mihalis and Rodnianski, Igor
A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds
Invent. math. 185 (2011) 467–559
Math Reviews MR2827094
25
Dafermos, Mihalis and Rodnianski, Igor
A new physical-space approach to decay for the wave equation with applications to black hole spacetimes
in XVIth International Congress on Mathematical Physics
(2010) 421–432
Math Reviews MR2730803
26
27
Dafermos, Mihalis and Rodnianski, Igor
Lectures on black holes and linear waves
in Evolution equations
Clay Math. Proc. 17 (2013) 97–205
Math Reviews MR3098640
28
Dafermos, Mihalis and Rodnianski, Igor
The red-shift effect and radiation decay on black hole spacetimes
Comm. Pure Appl. Math. 62 (2009) 859–919
Math Reviews MR2527808
29
30
Dafermos, Mihalis and Rodnianski, Igor and Shlapentokh-Rothman, Yakov
Decay for solutions of the wave equation on Kerr exterior spacetimes III: The full subextremal case |a|<M
Ann. of Math. 183 (2016) 787–913
Math Reviews MR3488738
31
Dafermos, Mihalis and Shlapentokh-Rothman, Yakov
Time-translation invariance of scattering maps and blue-shift instabilities on Kerr black hole spacetimes
Comm. Math. Phys. 350 (2017) 985–1016
Math Reviews MR3607468
32
Daudé, Thierry and Nicoleau, François
Direct and inverse scattering at fixed energy for massless charged Dirac fields by Kerr-Newman-de Sitter black holes
Mem. Amer. Math. Soc. 247 (2017) 113
Math Reviews MR3633460
33
Dimock, J.
Scattering for the wave equation on the Schwarzschild metric
Gen. Relativity Gravitation 17 (1985) 353–369
Math Reviews MR788801
34
Dimock, J. and Kay, Bernard S.
Classical and quantum scattering theory for linear scalar fields on the Schwarzschild metric II
J. Math. Phys. 27 (1986) 2520–2525
Math Reviews MR857397
35
Dimock, J. and Kay, Bernard S.
Classical and quantum scattering theory for linear scalar fields on the Schwarzschild metric I
Ann. Physics 175 (1987) 366–426
Math Reviews MR887979
36
Dyatlov, Semyon
Quasi-normal modes and exponential energy decay for the Kerr-de Sitter black hole
Comm. Math. Phys. 306 (2011) 119–163
Math Reviews MR2819421
37
Finster, F. and Kamran, N. and Smoller, J. and Yau, S.-T.
A rigorous treatment of energy extraction from a rotating black hole
Comm. Math. Phys. 287 (2009) 829–847
Math Reviews MR2486663
38
Friedlander, F. G.
Radiation fields and hyperbolic scattering theory
Math. Proc. Cambridge Philos. Soc. 88 (1980) 483–515
Math Reviews MR583989
39
Friedrichs, Kurt
Über die Spektralzerlegung eines Integraloperators
Math. Ann. 115 (1938) 249–272
Math Reviews MR1513187
40
Futterman, J. A. H. and Handler, F. A. and Matzner, R. A.
Scattering from black holes
Cambridge Univ. Press, Cambridge, 2009
Math Reviews MR2572642
41
Georgescu, V. and Gérard, C. and Häfner, Dietrich
Asymptotic completeness for superradiant Klein-Gordon equations and applications to the de Sitter–Kerr metric
J. Eur. Math. Soc. (JEMS) 19 (2017) 2371–2444
Math Reviews MR3668063
42
Hadamard, Jacques
Lectures on Cauchy's problem in linear partial differential equations
Oxford Univ. Press, London, 1923
Math Reviews MR0051411
43
Häfner, Dietrich
Creation of fermions by rotating charged black holes
Mém. Soc. Math. Fr. 117 (2009) 158
Math Reviews MR2742529
44
Häfner, Dietrich
Some mathematical aspects of the Hawking effect for rotating black holes
in Quantum field theory and gravity
(2012) 121–136
Math Reviews MR3074849
45
Häfner, Dietrich
Sur la théorie de la diffusion pour l'équation de Klein-Gordon dans la métrique de Kerr
Dissertationes Math. (Rozprawy Mat.) 421 (2003) 102
Math Reviews MR2031494
46
Häfner, Dietrich and Nicolas, Jean-Philippe
Scattering of massless Dirac fields by a Kerr black hole
Rev. Math. Phys. 16 (2004) 29–123
Math Reviews MR2047861
47
Hawking, S. W.
Particle creation by black holes
Comm. Math. Phys. 43 (1975) 199–220
Math Reviews MR0381625
48
Hawking, S. W. and Ellis, G. F. R.
The large scale structure of space-time
Cambridge Univ. Press, 1973
Math Reviews MR0424186
49
Kato, Tosio
Scattering theory and perturbation of continuous spectra
in Actes du Congrès International des Mathématiciens (Nice, 1970), t. 1
(1971) 135–140
Math Reviews MR0473876
50
Kay, Bernard S.
Instability of enclosed horizons
Gen. Relativity Gravitation 47 (2015) Art. 31
Math Reviews MR3317860
51
Klainerman, S.
Remark on the asymptotic behavior of the Klein-Gordon equation in R^n+1
Comm. Pure Appl. Math. 46 (1993) 137–144
Math Reviews MR1199196
52
László, A. and Rácz, I.
Superradiance or total reflection
in Relativity and Gravitation
Springer Proceedings in Physics 157 (2014) 119–127
53
Lax, Peter D. and Phillips, Ralph S.
Scattering theory
Academic Press, New York-London, 1967
Math Reviews MR0217440
54
Luk, Jonathan
Weak null singularities in general relativity
J. Amer. Math. Soc. 31 (2018) 1–63
Math Reviews MR3718450
55
Møller, C.
General properties of the characteristic matrix in the theory of elementary particles. I
Kgl. Danske Vid. Selsk. Mat.-Fys. Medd. 23 (1945) 2–48
Math Reviews MR0021466
56
Moschidis, Georgios
Logarithmic local energy decay for scalar waves on a general class of asymptotically flat spacetimes
Ann. PDE 2 (2016) Art. 5
Math Reviews MR3491573
57
Moschidis, Georgios and Shlapentokh-Rothman, Yakov
The degenerate redshift effect
in preparation
58
Olver, Frank W. J.
Asymptotics and special functions
A K Peters, 1997
Math Reviews MR1429619
59
O'Neill, Barrett
The geometry of Kerr black holes
A K Peters, Ltd., Wellesley, MA, 1995
Math Reviews MR1328643
60
Nicolas, Jean-Philippe
Scattering of linear Dirac fields by a spherically symmetric black hole
Ann. Inst. H. Poincaré Phys. Théor. 62 (1995) 145–179
Math Reviews MR1317184
61
Nicolas, Jean-Philippe
Conformal scattering on the Schwarzschild metric
Ann. Inst. Fourier (Grenoble) 66 (2016) 1175–1216
Math Reviews MR3494169
62
Reed, Michael and Simon, Barry
Methods of modern mathematical physics III. Scattering theory
Academic Press, 1979
Math Reviews MR529429
63
Rendall, A. D.
Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations
Proc. Roy. Soc. London Ser. A 427 (1990) 221–239
Math Reviews MR1032984
64
Sbierski, Jan
Characterisation of the energy of Gaussian beams on Lorentzian manifolds: with applications to black hole spacetimes
Anal. PDE 8 (2015) 1379–1420
Math Reviews MR3397001
65
Schlue, Volker
Decay of linear waves on higher-dimensional Schwarzschild black holes
Anal. PDE 6 (2013) 515–600
Math Reviews MR3080190
66
Shlapentokh-Rothman, Yakov
Exponentially growing finite energy solutions for the Klein-Gordon equation on sub-extremal Kerr spacetimes
Comm. Math. Phys. 329 (2014) 859–891
Math Reviews MR3212872
67
Shlapentokh-Rothman, Yakov
Quantitative mode stability for the wave equation on the Kerr spacetime
Ann. Henri Poincaré 16 (2015) 289–345
Math Reviews MR3296646
68
Starobinskii, A. A.
Amplification of waves during reflection from rotating black hole
Zh. Eksp. Teor. Fiz. 64 (1973) 48–57
69
Tataru, Daniel and Tohaneanu, Mihai
A local energy estimate on Kerr black hole backgrounds
Int. Math. Res. Not. 2011 (2011) 248–292
Math Reviews MR2764864
70
Teukolsky, Saul A. and Press, W. H.
Perturbations of a rotating lack hole III. Interaction of the hole with gravitational and electromagnetic radiation
Astrophys. J. 193 (1974) 443–451
71
Wald, Robert M.
Quantum field theory in curved spacetime and black hole thermodynamics
University of Chicago Press, Chicago, IL, 1994
Math Reviews MR1302174
72
Wheeler, J. A.
On the mathematical description of light nuclei by the method of resonating group structure
Phys. Rev. 52 (1937) 1107–1122
73
Whiting, Bernard F.
Mode stability of the Kerr black hole
J. Math. Phys. 30 (1989) 1301–1305
Math Reviews MR995773
74
Zeldovich, Y.
Generating of Waves by a Rotating Body
Zh. Eksp. Teor. Fiz. 14 (1971) 180–181