Catalogue et commandes en ligne (paiement sécurisé, VISA ou MASTERCARD uniquement)

Revues disponibles par abonnement

Annales scientifiques de l'ENS

Astérisque

Bulletin de la SMF

Mémoires de la SMF

Revue d'Histoire des Mathématiques

Gazette des Mathématiciens

Séries de livres

Astérisque

Cours Spécialisés

Documents Mathématiques

Mémoires de la SMF

Panoramas et Synthèses

Séminaires et Congrès

Série Chaire Jean Morlet

SMF/AMS Texts and Monographs

La Série T

Fascicules « Journée Annuelle »

Autres livres

Donald E. Knuth - traductions françaises

Rééditions du Séminaire Nicolas Bourbaki

Rééditions des Œuvres de Jean Leray

Revue de l'Institut Elie Cartan

Editions électroniques

Annales scientifiques de l'ENS

Bulletin de la SMF

Revue d'Histoire des Mathématiques

Séminaires et Congrès

Plus d'information / Abonnement

Publications grand public

L'explosion des mathématiques (smf.emath.fr)

Mathématiques L'explosion continue (smf.emath.fr)

Zoom sur les métiers des maths (smf.emath.fr)

Zoom sur les métiers des mathématiques et de l'informatique (smf.emath.fr)

Où en sont les mathématiques ?

La Série T

Pour les auteurs

Soumission des manuscrits

Formats et documentation

Plus d'info

Liste de diffusion électronique (smf.emath.fr)

Information pour les libraires et diffuseurs (smf.emath.fr)

Publications de la SMF
fr en
Votre numéro IP : 54.80.87.62
Accès aux édit. élec. : SémCong

Annales scientifiques de l'ENS

Présentation de la publication

Parutions

Dernières parutions

Comité de rédaction / Secrétariat

Série 4 :
Série 3 :
Série 2 :
Série 1 :

Faire une recherche


Catalogue & commande

Annales scientifiques de l'ENS - Parutions - série 4, 50 (2017)

Parutions < série 4, 50

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE, série 4 50, fascicule 5 (2017)

Van Tien Nguyen, Hatem Zaag
Finite degrees of freedom for the refined blow-up profile of the semilinear heat equation
Annales scientifiques de l'ENS 50, fascicule 5 (2017), 1241-1282

Télécharger cet article : Fichier PDF

Résumé :
Nombre fini de degrés de liberté du profil raffiné de l'équation semilinéaire de la chaleur
Nous raffinons le comportement asymptotique des solutions de l'équation semilinéaire de la chaleur avec une non-linéarité sous-critique au sens de Sobolev, qui explosent en temps fini à un point d'explosion avec le profil communément admis comme générique. Pour obtenir ce raffinement, nous devons abandonner le profil explicite comme premier ordre de l'approximation, et prenons à la place une fonction non explicite comme première description du comportement au voisinage de la singularité. Cette fonction non explicite est en fait une solution spécifique que nous construisons, obéissant à un certain comportement prescrit. La construction repose sur la réduction du problème à un problème en dimension finie et l'utilisation d'un argument topologique basé sur la théorie du degré pour conclure. De façon étonnante, on constate que le nouveau profil non explicite produit une famille avec un nombre fini de degrés de liberté, soit (N + 1)N2 si N est la dimension de l'espace.

Mots-clefs : Équation semilinéaire de la chaleur, explosion en temps fini, profil à l'explosion, stabilité.

Abstract:
We refine the asymptotic behavior of solutions to the semilinear heat equation with Sobolev subcritical power nonlinearity which blow up in some finite time at a blow-up point where the (supposed to be generic) profile holds. In order to obtain this refinement, we have to abandon the explicit profile function as a first order approximation, and take a non explicit function as a first order description of the singular behavior. This non explicit function is in fact a special solution which we construct, obeying some refined prescribed behavior. The construction relies on the reduction of the problem to a finite dimensional one and the use of a topological argument based on index theory to conclude. Surprisingly, the new non explicit profiles which we construct make a family with finite degrees of freedom, namely N(N+1)2 if N is the dimension of the space.

Keywords: Semilinear heat equations, finite-time blow-up, blow-up profile, stability.

Class. math. : 35K58, 35K55; 35B40, 35B44.


ISSN : 0012-9593
Publié avec le concours de : Centre National de la Recherche Scientifique

Bibliographie:

1
Ball, J. M.
Remarks on blow-up and nonexistence theorems for nonlinear evolution equations
Quart. J. Math. Oxford Ser. 28 (1977) 473–486
Math Reviews MR0473484
2
Bebernes, J. W. and Bressan, Alberto and Eberly, D.
A description of blowup for the solid fuel ignition model
Indiana Univ. Math. J. 36 (1987) 295–305
Math Reviews MR891776
3
Bernoff, Andrew J. and Bertozzi, Andrea L. and Witelski, Thomas P.
Axisymmetric surface diffusion: dynamics and stability of self-similar pinchoff
J. Statist. Phys. 93 (1998) 725–776
Math Reviews MR1666581
4
Bebernes, J. W. and Kassoy, D. R.
A mathematical analysis of blowup for thermal reactions—the spatially nonhomogeneous case
SIAM J. Appl. Math. 40 (1981) 476–484
Math Reviews MR614744
5
Bricmont, J. and Kupiainen, A.
Universality in blow-up for nonlinear heat equations
Nonlinearity 7 (1994) 539–575
Math Reviews MR1267701
6
Bressan, Alberto
On the asymptotic shape of blow-up
Indiana Univ. Math. J. 39 (1990) 947–960
Math Reviews MR1087180
7
Bressan, Alberto
Stable blow-up patterns
J. Differential Equations 98 (1992) 57–75
Math Reviews MR1168971
8
Chapman, S. J. and Hunton, B. J. and Ockendon, J. R.
Vortices and boundaries
Quart. Appl. Math. 56 (1998) 507–519
Math Reviews MR1637052
9
Côte, Raphaël and Zaag, Hatem
Construction of a multisoliton blowup solution to the semilinear wave equation in one space dimension
Comm. Pure Appl. Math. 66 (2013) 1541–1581
Math Reviews MR3084698
10
Ebde, M. A. and Zaag, Hatem
Construction and stability of a blow up solution for a nonlinear heat equation with a gradient term
SeMA J. 55 (2011) 5–21
Math Reviews MR2849015
11
Filippas, Stathis and Kohn, Robert V.
Refined asymptotics for the blowup of u_t-u=u^p
Comm. Pure Appl. Math. 45 (1992) 821–869
Math Reviews MR1164066
12
Filippas, Stathis and Liu, Wen Xiong
On the blowup of multidimensional semilinear heat equations
Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993) 313–344
Math Reviews MR1230711
13
Fermanian Kammerer, Clotilde and Merle, Frank and Zaag, Hatem
Stability of the blow-up profile of non-linear heat equations from the dynamical system point of view
Math. Ann. 317 (2000) 347–387
Math Reviews MR1764243
14
Fujita, Hiroshi
On the blowing up of solutions of the Cauchy problem for ut=u+u1+
J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966) 109–124
Math Reviews MR0214914
15
Fermanian Kammerer, Clotilde and Zaag, Hatem
Boundedness up to blow-up of the difference between two solutions to a semilinear heat equation
Nonlinearity 13 (2000) 1189–1216
Math Reviews MR1767954
16
Glimm, James and Jaffe, Arthur
Quantum physics
Springer, New York, 1987
Math Reviews MR887102
17
Giga, Yoshikazu and Kohn, Robert V.
Asymptotically self-similar blow-up of semilinear heat equations
Comm. Pure Appl. Math. 38 (1985) 297–319
Math Reviews MR784476
18
Giga, Yoshikazu and Kohn, Robert V.
Characterizing blowup using similarity variables
Indiana Univ. Math. J. 36 (1987) 1–40
Math Reviews MR876989
19
Giga, Yoshikazu and Kohn, Robert V.
Nondegeneracy of blowup for semilinear heat equations
Comm. Pure Appl. Math. 42 (1989) 845–884
Math Reviews MR1003437
20
Herrero, M. A. and Velázquez, J. J. L.
Flat blow-up in one-dimensional semilinear heat equations
Differential Integral Equations 5 (1992) 973–997
Math Reviews MR1171974
21
Herrero, M. A. and Velázquez, J. J. L.
Generic behaviour of one-dimensional blow up patterns
Ann. Scuola Norm. Sup. Pisa Cl. Sci. 19 (1992) 381–450
Math Reviews MR1205406
22
Herrero, M. A. and Velázquez, J. J. L.
Blow-up behaviour of one-dimensional semilinear parabolic equations
Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993) 131–189
Math Reviews MR1220032
23
Kaplan, Stanley
On the growth of solutions of quasi-linear parabolic equations
Comm. Pure Appl. Math. 16 (1963) 305–330
Math Reviews MR0160044
24
Kassoy, D. R. and Poland, Justin
The thermal explosion confined by a constant temperature boundary. I. The induction period solution
SIAM J. Appl. Math. 39 (1980) 412–430
Math Reviews MR593679
25
Kassoy, D. R. and Poland, Justin
The thermal explosion confined by a constant temperature boundary. II. The extremely rapid transient
SIAM J. Appl. Math. 41 (1981) 231–246
Math Reviews MR628948
26
Levine, Howard A.
Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Put=-Au+F(u)
Arch. Rational Mech. Anal. 51 (1973) 371–386
Math Reviews MR0348216
27
Merle, Frank and Raphaël, Pierre and Rodnianski, Igor
Blow up dynamics for smooth equivariant solutions to the energy critical Schrödinger map
C. R. Math. Acad. Sci. Paris 349 (2011) 279–283
Math Reviews MR2783320
28
Merle, Frank and Zaag, Hatem
Reconnection of vortex with the boundary and finite time quenching
Nonlinearity 10 (1997) 1497–1550
Math Reviews MR1483553
29
Merle, Frank and Zaag, Hatem
Stability of the blow-up profile for equations of the type u_t=u+|u|^p-1u
Duke Math. J. 86 (1997) 143–195
Math Reviews MR1427848
30
Merle, Frank and Zaag, Hatem
Optimal estimates for blowup rate and behavior for nonlinear heat equations
Comm. Pure Appl. Math. 51 (1998) 139–196
Math Reviews MR1488298
31
Merle, Frank and Zaag, Hatem
Refined uniform estimates at blow-up and applications for nonlinear heat equations
Geom. Funct. Anal. 8 (1998) 1043–1085
Math Reviews MR1664791
32
Merle, Frank and Zaag, Hatem
A Liouville theorem for vector-valued nonlinear heat equations and applications
Math. Ann. 316 (2000) 103–137
Math Reviews MR1735081
33
Masmoudi, Nader and Zaag, Hatem
Blow-up profile for the complex Ginzburg-Landau equation
J. Funct. Anal. 255 (2008) 1613–1666
Math Reviews MR2442077
34
Nguyen, Van Tien and Zaag, Hatem
Construction of a stable blow-up solution for a class of strongly perturbed semilinear heat equations
Ann. Scuola Norm. Sup. Pisa Cl. Sci. 16 (2016) 1275–1314
35
Nouaili, Nejla and Zaag, Hatem
Profile for a simultaneously blowing up solution to a complex valued semilinear heat equation
Comm. Partial Differential Equations 40 (2015) 1197–1217
Math Reviews MR3341202
36
Raphaël, Pierre and Rodnianski, Igor
Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems
Publ. Math. IHÉS 115 (2012) 1–122
Math Reviews MR2929728
37
Raphaël, Pierre and Schweyer, Remi
Stable blowup dynamics for the 1-corotational energy critical harmonic heat flow
Comm. Pure Appl. Math. 66 (2013) 414–480
Math Reviews MR3008229
38
Schweyer, Rémi
Type II blow-up for the four dimensional energy critical semi linear heat equation
J. Funct. Anal. 263 (2012) 3922–3983
Math Reviews MR2990063
39
Segur, Harvey and Kruskal, Martin D.
Nonexistence of small-amplitude breather solutions in ^4 theory
Phys. Rev. Lett. 58 (1987) 747–750
Math Reviews MR879720
40
Soner, H. M. and Souganidis, P. E.
Singularities and uniqueness of cylindrically symmetric surfaces moving by mean curvature
Comm. Partial Differential Equations 18 (1993) 859–894
Math Reviews MR1218522
41
Velázquez, J. J. L.
Higher-dimensional blow up for semilinear parabolic equations
Comm. Partial Differential Equations 17 (1992) 1567–1596
Math Reviews MR1187622
42
Velázquez, J. J. L.
Classification of singularities for blowing up solutions in higher dimensions
Trans. Amer. Math. Soc. 338 (1993) 441–464
Math Reviews MR1134760
43
Velázquez, J. J. L.
Estimates on the (n-1)-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation
Indiana Univ. Math. J. 42 (1993) 445–476
Math Reviews MR1237055
44
Ward, Michael J.
Topics in singular perturbations and hybrid asymptotic-numerical methods
in ICIAM 95 (Hamburg, 1995)
Math. Res. 87 (1996) 435–462
Math Reviews MR1387612
45
Weissler, Fred B.
Single point blow-up for a semilinear initial value problem
J. Differential Equations 55 (1984) 204–224
Math Reviews MR764124
46
Zaag, Hatem
Blow-up results for vector-valued nonlinear heat equations with no gradient structure
Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 581–622
Math Reviews MR1643389
47
Zaag, Hatem
On the regularity of the blow-up set for semilinear heat equations
Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002) 505–542
Math Reviews MR1922468
48
Zaag, Hatem
One-dimensional behavior of singular N-dimensional solutions of semilinear heat equations
Comm. Math. Phys. 225 (2002) 523–549
Math Reviews MR1888872
49
Zaag, Hatem
Determination of the curvature of the blow-up set and refined singular behavior for a semilinear heat equation
Duke Math. J. 133 (2006) 499–525
Math Reviews MR2228461