Catalogue et commandes en ligne (paiement sécurisé, VISA ou MASTERCARD uniquement)

Revues disponibles par abonnement

Annales scientifiques de l'ENS

Astérisque

Bulletin de la SMF

Mémoires de la SMF

Revue d'Histoire des Mathématiques

Gazette des Mathématiciens

Séries de livres

Astérisque

Cours Spécialisés

Documents Mathématiques

Mémoires de la SMF

Panoramas et Synthèses

Séminaires et Congrès

Série Chaire Jean Morlet

SMF/AMS Texts and Monographs

La Série T

Fascicules « Journée Annuelle »

Autres livres

Donald E. Knuth - traductions françaises

Rééditions du Séminaire Nicolas Bourbaki

Rééditions des Œuvres de Jean Leray

Revue de l'Institut Elie Cartan

Editions électroniques

Annales scientifiques de l'ENS

Bulletin de la SMF

Revue d'Histoire des Mathématiques

Séminaires et Congrès

Plus d'information / Abonnement

Publications grand public

L'explosion des mathématiques (smf.emath.fr)

Mathématiques L'explosion continue (smf.emath.fr)

Zoom sur les métiers des maths (smf.emath.fr)

Zoom sur les métiers des mathématiques et de l'informatique (smf.emath.fr)

Où en sont les mathématiques ?

La Série T

Pour les auteurs

Soumission des manuscrits

Formats et documentation

Plus d'info

Liste de diffusion électronique (smf.emath.fr)

Information pour les libraires et diffuseurs (smf.emath.fr)

Publications de la SMF
fr en
Votre numéro IP : 54.198.23.251
Accès aux édit. élec. : SémCong

Annales scientifiques de l'ENS

Présentation de la publication

Parutions

Dernières parutions

Comité de rédaction / Secrétariat

Série 4 :
Série 3 :
Série 2 :
Série 1 :

Faire une recherche


Catalogue & commande

Annales scientifiques de l'ENS - Parutions - série 4, 48 (2015)

Parutions < série 4, 48

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE, série 4 48, fascicule 4 (2015)

Francesco Bonsante, Gabriele Mondello, Jean-Marc Schlenker
A cyclic extension of the earthquake flow II
Annales scientifiques de l'ENS 48, fascicule 4 (2015), 811-859

Télécharger cet article : Fichier PDF
Acheter l'ouvrage

Résumé :
Une extension cyclique du flot des tremblements de terre II
Le flot des glissements de terrain, introduit dans [5], est un analogue régulier du flot des tremblements de terre sur l'espace de Teichmüller, qui partage certaines de ses principales propriétés. Nous montrons ici que d'autres propriétés des tremblements de terre s'appliquent aux glissements de terrain. Le flot des glissements de terrain est le flot hamiltonien d'une fonction convexe. L'application de greffage régulière sgr, à valeur dans l'espace de Teichmüller, qui est aux glissements de terrain ce que le greffage est aux tremblements de terre, est propre et surjective par rapport à chacune de ses variables. L'application de greffage régulière SGr, à valeur dans l'espace des structures projectives complexes, est symplectique (à un facteur multiplicatif près). La composition de deux glissements de terrain a un point fixe dans l'espace de Teichmüller. En conséquence, nous obtenons des résultats nouveaux sur les surfaces à courbure de Gauss constantes dans des variétés de dimension 3 hyperboliques ou AdS. Nous montrons aussi que le flot des glissements de terrain a une extension satisfaisante au bord de l'espace de Teichmüller.

Mots-clefs : Teichmüller space, hyperbolic surfaces, minimal Lagrangian maps, Weil-Petersson metric, Codazzi tensors.

Abstract:
The landslide flow, introduced in [5], is a smoother analog of the earthquake flow on Teichmüller space which shares some of its key properties. We show here that further properties of earthquakes apply to landslides. The landslide flow is the Hamiltonian flow of a convex function. The smooth grafting map sgr taking values in Teichmüller space, which is to landslides as grafting is to earthquakes, is proper and surjective with respect to either of its variables. The smooth grafting map SGr taking values in the space of complex projective structures is symplectic (up to a multiplicative constant). The composition of two landslides has a fixed point on Teichmüller space. As a consequence we obtain new results on constant Gauss curvature surfaces in 3-dimensional hyperbolic or AdS manifolds. We also show that the landslide flow has a satisfactory extension to the boundary of Teichmüller space.

Keywords: Espace de Teichmüller, surfaces hyperboliques, applications minimales lagrangiennes, métrique de Weil-Petersson, tenseurs de Codazzi.

Class. math. : 30F60, 53C42, 49Q10, 53C43.


ISSN : 0012-9593
Publié avec le concours de : Centre National de la Recherche Scientifique

Bibliographie:

1
Bonsante, Francesco and Schlenker, Jean-Marc
Fixed points of compositions of earthquakes
Duke Math. J. 161 (2012) 1011–1054
Math Reviews MR2913100
2
Ahlfors, Lars V.
Some remarks on Teichmüller's space of Riemann surfaces
Ann. of Math. 74 (1961) 171–191
Math Reviews MR0204641 (34 \#4480)
3
Andersson, Lars and Barbot, Thierry and Benedetti, Riccardo and Bonsante, Francesco and Goldman, William M. and Labourie, François and Scannell, Kevin P. and Schlenker, Jean-Marc
Notes on: ``Lorentz spacetimes of constant curvature'' [Geom. Dedicata 126 (2007), 3–45] by G. Mess
Geom. Dedicata 126 (2007) 47–70
Math Reviews MR2328922 (2010a:53155)
4
Barbot, Thierry and Béguin, François and Zeghib, Abdelghani
Prescribing Gauss curvature of surfaces in 3-dimensional spacetimes: application to the Minkowski problem in the Minkowski space
Ann. Inst. Fourier (Grenoble) 61 (2011) 511–591
Math Reviews MR2895066
5
6
Barbot, Thierry and Bonsante, Francesco and Schlenker, Jean-Marc
Collisions of particles in locally AdS spacetimes I. Local description and global examples
Comm. Math. Phys. 308 (2011) 147–200
Math Reviews MR2842974
7
Benedetti, Riccardo and Bonsante, Francesco
Canonical Wick rotations in 3-dimensional gravity
Mem. Amer. Math. Soc. 198 (2009)
Math Reviews MR2499272 (2010e:53131)
8
Bers, Lipman and Ehrenpreis, Leon
Holomorphic convexity of Teichmüller spaces
Bull. Amer. Math. Soc. 70 (1964) 761–764
Math Reviews MR0168800 (29 \#6056)
9
Bonsante, Francesco and Mondello, Gabriele and Schlenker, Jean-Marc
A cyclic extension of the earthquake flow I
Geom. Topol. 17 (2013) 157–234
Math Reviews MR3035326
10
Casson, Andrew and Jungreis, Douglas
Convergence groups and Seifert fibered 3-manifolds
Invent. Math. 118 (1994) 441–456
Math Reviews MR1296353 (96f:57011)
11
12
Dumas, David and Wolf, Michael
Projective structures, grafting and measured laminations
Geom. Topol. 12 (2008) 351–386
Math Reviews MR2390348 (2009c:30114)
13
Eells, J. and Lemaire, L.
Deformations of metrics and associated harmonic maps
Proc. Indian Acad. Sci. Math. Sci. 90 (1981) 33–45
Math Reviews MR653945 (83g:58013)
14
Fathi, A. and Laudenbach, F. and Poenaru, V.
Travaux de Thurston sur les surfaces
Soc.Math.France, 1991
15
Fischer, A. E. and Tromba, A. J.
A new proof that Teichmüller space is a cell
Trans. Amer. Math. Soc. 303 (1987) 257–262
Math Reviews MR896021 (89b:32030)
16
Gabai, David
Convergence groups are Fuchsian groups
Ann. of Math. 136 (1992) 447–510
Math Reviews MR1189862 (93m:20065)
17
Gardiner, Frederick P.
Measured foliations and the minimal norm property for quadratic differentials
Acta Math. 152 (1984) 57–76
Math Reviews MR736212 (85i:30085)
18
19
Hubbard, John and Masur, Howard
Quadratic differentials and foliations
Acta Math. 142 (1979) 221–274
Math Reviews MR523212 (80h:30047)
20
Kamishima, Yoshinobu and Tan, Ser P.
Deformation spaces on geometric structures
in Aspects of low-dimensional manifolds
Adv. Stud. Pure Math. 20 (1992) 263–299
Math Reviews MR1208313 (94k:57023)
21
Kawai, Shingo
The symplectic nature of the space of projective connections on Riemann surfaces
Math. Ann. 305 (1996) 161–182
Math Reviews MR1386110 (97a:32015)
22
Kerckhoff, Steven P.
The Nielsen realization problem
Ann. of Math. 117 (1983) 235–265
Math Reviews MR690845 (85e:32029)
23
Kerckhoff, Steven P.
Lines of minima in Teichmüller space
Duke Math. J. 65 (1992) 187–213
Math Reviews MR1150583 (93b:32027)
24
Krasnov, Kirill and Schlenker, Jean-Marc
Minimal surfaces and particles in 3-manifolds
Geom. Dedicata 126 (2007) 187–254
Math Reviews MR2328927 (2009c:53076)
25
Krasnov, Kirill and Schlenker, Jean-Marc
On the renormalized volume of hyperbolic 3-manifolds
Comm. Math. Phys. 279 (2008) 637–668
Math Reviews MR2386723 (2010g:53144)
26
Krasnov, Kirill and Schlenker, Jean-Marc
A symplectic map between hyperbolic and complex Teichmüller theory
Duke Math. J. 150 (2009) 331–356
Math Reviews MR2569616 (2010k:32021)
27
Krasnov, Kirill and Schlenker, Jean-Marc
The Weil-Petersson metric and the renormalized volume of hyperbolic 3-manifolds
in Handbook of Teichmüller theory. Volume III
IRMA Lect. Math. Theor. Phys. 17 (2012) 779–819
Math Reviews MR2952776
28
Labourie, François
Surfaces convexes dans l'espace hyperbolique et <b>C</b>P1-structures
J. London Math. Soc. 45 (1992) 549–565
Math Reviews MR1180262 (93i:53062)
29
McMullen, Curtis T.
Complex earthquakes and Teichmüller theory
J. Amer. Math. Soc. 11 (1998) 283–320
Math Reviews MR1478844 (98i:32030)
30
Mess, Geoffrey
Lorentz spacetimes of constant curvature
Geom. Dedicata 126 (2007) 3–45
Math Reviews MR2328921 (2010a:53154)
31
Papadopoulos, Athanase and Penner, R. C.
The Weil-Petersson symplectic structure at Thurston's boundary
Trans. Amer. Math. Soc. 335 (1993) 891–904
Math Reviews MR1089420 (93d:57022)
32
Papadopoulos, Athanase and Théret, Guillaume
On the topology defined by Thurston's asymmetric metric
Math. Proc. Cambridge Philos. Soc. 142 (2007) 487–496
Math Reviews MR2329697 (2008m:57046)
33
Hodgson, Craig D. and Rivin, Igor
A characterization of compact convex polyhedra in hyperbolic 3-space
Invent. Math. 111 (1993) 77–111
Math Reviews MR1193599 (93j:52015)
34
Rivin, Igor and Schlenker, Jean-Marc
The Schläfli formula in Einstein manifolds with boundary
Electron. Res. Announc. Amer. Math. Soc. 5 (1999) 18–23
Math Reviews MR1669399 (2000a:53076)
35
Sampson, J. H.
Some properties and applications of harmonic mappings
Ann. Sci. École Norm. Sup. 11 (1978) 211–228
Math Reviews MR510549 (80b:58031)
36
Scannell, Kevin P. and Wolf, Michael
The grafting map of Teichmüller space
J. Amer. Math. Soc. 15 (2002) 893–927
Math Reviews MR1915822 (2003d:32011)
37
Schlenker, Jean-Marc
Surfaces convexes dans des espaces lorentziens à courbure constante
Comm. Anal. Geom. 4 (1996) 285–331
Math Reviews MR1393565 (98c:53076)
38
Schlenker, Jean-Marc
Hyperbolic manifolds with convex boundary
Invent. Math. 163 (2006) 109–169
Math Reviews MR2208419 (2006m:57023)
39
Schoen, Richard M.
The role of harmonic mappings in rigidity and deformation problems
in Complex geometry (Osaka, 1990)
Lecture Notes in Pure and Appl. Math. 143 (1993) 179–200
Math Reviews MR1201611 (94g:58055)
40
Sözen, Yaşar and Bonahon, Francis
The Weil-Petersson and Thurston symplectic forms
Duke Math. J. 108 (2001) 581–597
Math Reviews MR1838662 (2002c:32023)
41
Strebel, Kurt
Quadratic differentials
Springer, Berlin, 1984
Math Reviews MR743423 (86a:30072)
42
Zograf, Peter G. and Takhtadzhyan, L. A.
On the uniformization of Riemann surfaces and on the Weil-Petersson metric on the Teichmüller and Schottky spaces
Mat. Sb. (N.S.) 132 (1987) 304–321 ; English translation: Math. USSR Sb. 60 (1988), 297–313
Math Reviews MR889594 (88i:32031)
43
Takhtajan, Leon A. and Zograf, Peter G.
Hyperbolic 2-spheres with conical singularities, accessory parameters and Kähler metrics on M0,n
Trans. Amer. Math. Soc. 355 (2003) 1857–1867
Math Reviews MR1953529 (2003j:32031)
44
Takhtajan, Leon A. and Teo, Lee-Peng
Liouville action and Weil-Petersson metric on deformation spaces, global Kleinian reciprocity and holography
Comm. Math. Phys. 239 (2003) 183–240
Math Reviews MR1997440 (2005c:32021)
45
Thurston, William P.
Earthquakes in two-dimensional hyperbolic geometry
in Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984)
London Math. Soc. Lecture Note Ser. 112 (1986) 91–112
Math Reviews MR903860 (88m:57015)
46
47
Tromba, A. J.
On an energy function for the Weil-Petersson metric on Teichmüller space
Manuscripta Math. 59 (1987) 249–260
Math Reviews MR905201 (89b:32031)
48
Tromba, A. J.
Dirichlet's energy of Teichmüller moduli space is strictly pluri-subharmonic
in Geometric analysis and the calculus of variations
(1996) 315–341
Math Reviews MR1449414 (98f:58066)
49
Tromba, A. J.
Dirichlet's energy on Teichmüller's moduli space and the Nielsen realization problem
Math. Z. 222 (1996) 451–464
Math Reviews MR1400202 (97j:32013)
50
Wolf, Michael
The Teichmüller theory of harmonic maps
J. Differential Geom. 29 (1989) 449–479
Math Reviews MR982185 (90h:58023)
51
Wolf, Michael
Harmonic maps from surfaces to R-trees
Math. Z. 218 (1995) 577–593
Math Reviews MR1326987 (97b:58042)
52
Wolf, Michael
The Weil-Petersson Hessian of length on Teichmüller space
J. Differential Geom. 91 (2012) 129–169
Math Reviews MR2944964
53
Wolpert, Scott A.
On the symplectic geometry of deformations of a hyperbolic surface
Ann. of Math. 117 (1983) 207–234
Math Reviews MR690844 (85e:32028)
54
Wolpert, Scott A.
Geodesic length functions and the Nielsen problem
J. Differential Geom. 25 (1987) 275–296
Math Reviews MR880186 (88e:32032)