Catalogue et commandes en ligne (paiement sécurisé, VISA ou MASTERCARD uniquement)

Revues disponibles par abonnement

Annales scientifiques de l'ENS

Astérisque

Bulletin de la SMF

Mémoires de la SMF

Revue d'Histoire des Mathématiques

Gazette des Mathématiciens

Séries de livres

Astérisque

Cours Spécialisés

Documents Mathématiques

Mémoires de la SMF

Panoramas et Synthèses

Séminaires et Congrès

Série Chaire Jean Morlet

SMF/AMS Texts and Monographs

La Série T

Fascicules « Journée Annuelle »

Autres livres

Donald E. Knuth - traductions françaises

Rééditions du Séminaire Nicolas Bourbaki

Rééditions des Œuvres de Jean Leray

Revue de l'Institut Elie Cartan

Editions électroniques

Annales scientifiques de l'ENS

Bulletin de la SMF

Revue d'Histoire des Mathématiques

Séminaires et Congrès

Plus d'information / Abonnement

Publications grand public

L'explosion des mathématiques (smf.emath.fr)

Mathématiques L'explosion continue (smf.emath.fr)

Zoom sur les métiers des maths (smf.emath.fr)

Zoom sur les métiers des mathématiques et de l'informatique (smf.emath.fr)

Où en sont les mathématiques ?

La Série T

Pour les auteurs

Soumission des manuscrits

Formats et documentation

Plus d'info

Liste de diffusion électronique (smf.emath.fr)

Information pour les libraires et diffuseurs (smf.emath.fr)

Publications de la SMF
fr en
Votre numéro IP : 54.91.48.104
Accès aux édit. élec. : SémCong

Annales scientifiques de l'ENS

Présentation de la publication

Parutions

Dernières parutions

Comité de rédaction / Secrétariat

Série 4 :
Série 3 :
Série 2 :
Série 1 :

Faire une recherche


Catalogue & commande

Annales scientifiques de l'ENS - Parutions - série 4, 48 (2015)

Parutions < série 4, 48

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE, série 4 48, fascicule 5 (2015)

Lewis Bowen, Amos Nevo
Von Neumann and Birkhoff ergodic theorems for negatively curved groups
Annales scientifiques de l'ENS 48, fascicule 5 (2015), 1113-1147

Télécharger cet article : Fichier PDF

Résumé :
Théorèmes ergodiques de von Neumann et de Birkhoff sur les groupes à courbure négative
Pour tout groupe hyperbolique au sens de Gromov et pour toute action, préservant la mesure, sur un espace de probabilités, nous démontrons une inégalité maximale pour les moyennes sur des boules concentriques ou sur des anneaux sphériques concentriques de même épaisseur. Sous une hypothèse supplémentaire, valable par exemple pour les actions isométriques et proprement discontinues sur des espaces CAT(-1), nous démontrons de plus un théorème ergodique ponctuel pour une suite de mesures de probabilités à support dans des anneaux sphériques concentriques.

Mots-clefs : Groupe à courbure négative, action de groupe, théorème ergodique, inégalité maximale, mesure de Patterson-Sullivan, relation d'équivalence mesurable, bord de Poisson.

Abstract:
We prove maximal inequalities for concentric ball and spherical shell averages on a general Gromov hyperbolic group, in arbitrary probability preserving actions of the group. Under an additional condition, satisfied for example by all groups acting isometrically and properly discontinuously on CAT(-1) spaces, we prove a pointwise ergodic theorem with respect to a sequence of probability measures supported on concentric spherical shells.

Keywords: Negatively curved group, ergodic theorem, maximal inequality, Patterson-Sullivan measure, measurable equivalence relations, Poisson boundary.

Class. math. : 28D15, 37A20, 20F67, 60J50.


ISSN : 0012-9593
Publié avec le concours de : Centre National de la Recherche Scientifique

Bibliographie:

1
Aaronson, Jon
An introduction to infinite ergodic theory
Amer. Math. Soc., Providence, RI, 1997
Math Reviews MR1450400 (99d:28025)
2
Adams, S.
Boundary amenability for word hyperbolic groups and an application to smooth dynamics of simple groups
Topology 33 (1994) 765–783
Math Reviews MR1293309 (96g:58104)
3
Aaronson, Jon and Lemańczyk, Mariusz
Exactness of Rokhlin endomorphisms and weak mixing of Poisson boundaries
in Algebraic and topological dynamics
Contemp. Math. 385 (2005) 77–87
Math Reviews MR2180230 (2006g:37002)
4
Ancona, Alano
Negatively curved manifolds, elliptic operators, and the Martin boundary
Ann. of Math. 125 (1987) 495–536
Math Reviews MR890161 (88k:58160)
5
Ancona, Alano
Positive harmonic functions and hyperbolicity
in Potential theory—surveys and problems (Prague, 1987)
Lecture Notes in Math. 1344 (1988) 1–23
Math Reviews MR973878
6
Ancona, Alano
Théorie du potentiel sur les graphes et les variétés
in École d'été de Probabilités de Saint-Flour XVIII—1988
Lecture Notes in Math. 1427 (1990) 1–112
Math Reviews MR1100282 (92g:31012)
7
Anantharaman, Claire and Anker, Jean-Philippe and Babillot, Martine and Bonami, Aline and Demange, Bruno and Grellier, Sandrine and Havard, François and Jaming, Philippe and Lesigne, Emmanuel and Maheux, Patrick and Otal, Jean-Pierre and Schapira, Barbara and Schreiber, Jean-Pierre
Théorèmes ergodiques pour les actions de groupes
L'Enseignement Mathématique, Geneva, 2010
Math Reviews MR2643350 (2011h:47010)
8
Arnold, V. I. and Krylov, A. L.
Uniform distribution of points on a sphere and certain ergodic properties of solutions of linear ordinary differential equations in a complex domain
Dokl. Akad. Nauk SSSR 148 (1963) 9–12
Math Reviews MR0150374 (27 \#375)
9
Bridson, Martin R. and Haefliger, André
Metric spaces of non-positive curvature
Springer, Berlin, 1999
Math Reviews MR1744486 (2000k:53038)
10
Blachère, Sébastien and Haïssinsky, Peter and Mathieu, Pierre
Harmonic measures versus quasiconformal measures for hyperbolic groups
Ann. Sci. Éc. Norm. Supér. 44 (2011) 683–721
Math Reviews MR2919980
11
Birkhoff, G. D.
Proof of the ergodic theorem
Proc. Nat. Acad. Sci. USA 17 (1931) 656–660
12
Björklund, Michael
Central limit theorems for Gromov hyperbolic groups
J. Theoret. Probab. 23 (2010) 871–887
Math Reviews MR2679960 (2011k:60011)
13
Bogopolski, O. V. and Gerasimov, V. N.
Finite subgroups of hyperbolic groups
Algebra i Logika 34 (1995) 619–622
Math Reviews MR1400705 (97c:20055)
14
Bowen, Lewis
Invariant measures on the space of horofunctions of a word hyperbolic group
Ergodic Theory Dynam. Systems 30 (2010) 97–129
Math Reviews MR2586347 (2011g:20062)
15
Bowen, Lewis
The type and stable type of the boundary of a Gromov hyperbolic group
Geom. Dedicata 172 (2014) 363–386
Math Reviews MR3253786
16
Bowen, Lewis and Connell, Chris
Growth of Relatively Hyperbolic Groups
in preparation
17
Bowen, Lewis and Nevo, Amos
Geometric covering arguments and ergodic theorems for free groups
Enseign. Math. 59 (2013) 133–164
Math Reviews MR3113602
18
Bowen, Lewis and Nevo, Amos
Pointwise ergodic theorems beyond amenable groups
Ergodic Theory Dynam. Systems 33 (2013) 777–820
Math Reviews MR3062901
19
Bowen, Lewis and Nevo, Amos
Amenable equivalence relations and the construction of ergodic averages for group actions
J. Anal. Math. 126 (2015) 359–388
Math Reviews MR3358037
20
Bonk, M. and Schramm, O.
Embeddings of Gromov hyperbolic spaces
Geom. Funct. Anal. 10 (2000) 266–306
Math Reviews MR1771428 (2001g:53077)
21
Brady, Noel
Finite subgroups of hyperbolic groups
Internat. J. Algebra Comput. 10 (2000) 399–405
Math Reviews MR1776048 (2001f:20084)
22
Breuillard, Emmanuel
Geometry of locally compact groups of polynomial growth and shape of large balls
Groups Geom. Dyn. 8 (2014) 669–732
Math Reviews MR3267520
23
Bufetov, Alexander I.
Operator ergodic theorems for actions of free semigroups and groups
Funktsional. Anal. i Prilozhen. 34 (2000) 1–17
Math Reviews MR1818281 (2002b:37005)
24
Bufetov, Alexander I.
Convergence of spherical averages for actions of free groups
Ann. of Math. 155 (2002) 929–944
Math Reviews MR1923970 (2003f:37008)
25
Bufetov, Alexander I. and Khristoforov, Mikhail and Klimenko, Alexey
Cesàro convergence of spherical averages for measure-preserving actions of Markov semigroups and groups
Int. Math. Res. Not. 2012 (2012) 4797–4829
Math Reviews MR2993436
26
Bufetov, Alexander I. and Klimenko, Alexey
Maximal inequality and ergodic theorems for Markov groups
Tr. Mat. Inst. Steklova 277 (2012) 33–48 translation: Proc. Steklov Inst. Math. 277 (2012), 27–42
Math Reviews MR3052262
27
Calegari, Danny
The ergodic theory of hyperbolic groups
in Geometry and topology down under
Contemp. Math. 597 (2013) 15–52
Math Reviews MR3186668
28
Calegari, Danny and Fujiwara, Koji
Combable functions, quasimorphisms, and the central limit theorem
Ergodic Theory Dynam. Systems 30 (2010) 1343–1369
Math Reviews MR2718897 (2011k:20088)
29
Colding, Tobias H. and Minicozzi, William P. II
Liouville theorems for harmonic sections and applications
Comm. Pure Appl. Math. 51 (1998) 113–138
Math Reviews MR1488297 (98m:53053)
30
Connes, A. and Feldman, Jacob and Weiss, Benjamin
An amenable equivalence relation is generated by a single transformation
Ergodic Theory Dynam. Systems 1 (1981) 431–450 (1982)
Math Reviews MR662736 (84h:46090)
31
Connell, Chris and Muchnik, Roman
Harmonicity of quasiconformal measures and Poisson boundaries of hyperbolic spaces
Geom. Funct. Anal. 17 (2007) 707–769
Math Reviews MR2346273 (2009e:60179)
32
Coornaert, Michel
Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de Gromov
Pacific J. Math. 159 (1993) 241–270
Math Reviews MR1214072 (94m:57075)
33
Coornaert, Michel and Papadopoulos, Athanase
Horofunctions and symbolic dynamics on Gromov hyperbolic groups
Glasg. Math. J. 43 (2001) 425–456
Math Reviews MR1878587 (2003c:20047)
34
Dye, H. A.
On groups of measure preserving transformation. I
Amer. J. Math. 81 (1959) 119–159
Math Reviews MR0131516 (24 \#A1366)
35
Dye, H. A.
On groups of measure preserving transformations. II
Amer. J. Math. 85 (1963) 551–576
Math Reviews MR0158048 (28 \#1275)
36
Feldman, Jacob and Moore, Calvin C.
Ergodic equivalence relations, cohomology, and von Neumann algebras. I
Trans. Amer. Math. Soc. 234 (1977) 289–324
Math Reviews MR0578656 (58 \#28261a)
37
Flajolet, Philippe and Sedgewick, Robert
Analytic combinatorics
Cambridge Univ. Press, Cambridge, 2009
Math Reviews MR2483235 (2010h:05005)
38
Fujiwara, Koji and Nevo, Amos
Maximal and pointwise ergodic theorems for word-hyperbolic groups
Ergodic Theory Dynam. Systems 18 (1998) 843–858
Math Reviews MR1645314 (99j:22006)
39
Sur les groupes hyperboliques d'après Mikhael Gromov
Birkhäuser, 1990 Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988, Edited by É. Ghys and P. de la Harpe
Math Reviews MR1086648 (92f:53050)
40
Gorodnik, Alexander and Nevo, Amos
The ergodic theory of lattice subgroups
Princeton Univ. Press, Princeton, NJ, 2010
Math Reviews MR2573139 (2011c:22006)
41
Gromov, M.
Hyperbolic groups
in Essays in group theory
Math. Sci. Res. Inst. Publ. 8 (1987) 75–263
Math Reviews MR919829 (89e:20070)
42
Grigorchuk, R. I.
Ergodic theorems for the actions of a free group and a free semigroup
Mat. Zametki 65 (1999) 779–783 ; translation: Math. Notes 65 (1999), 779–783
Math Reviews MR1716245 (2000h:37004)
43
Guivarch, Yves
Généralisation d'un théorème de von Neumann
C. R. Acad. Sci. Paris Sér. 268 (1969) 1020–1023
Math Reviews MR0251191 (40 \#4422)
44
Izumi, Masaki and Neshveyev, Sergey and Okayasu, Rui
The ratio set of the harmonic measure of a random walk on a hyperbolic group
Israel J. Math. 163 (2008) 285–316
Math Reviews MR2391133 (2009f:60094)
45
Kaimanovich, Vadim A.
Amenability, hyperfiniteness, and isoperimetric inequalities
C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 999–1004
Math Reviews MR1485618 (98j:28014)
46
Kaimanovich, Vadim A.
Double ergodicity of the Poisson boundary and applications to bounded cohomology
Geom. Funct. Anal. 13 (2003) 852–861
Math Reviews MR2006560 (2004k:60128)
47
Kapovich, Ilya and Benakli, Nadia
Boundaries of hyperbolic groups
in Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001)
Contemp. Math. 296 (2002) 39–93
Math Reviews MR1921706 (2004e:20075)
48
Krieger, Wolfgang
On the Araki-Woods asymptotic ratio set and non-singular transformations of a measure space
in Contributions to Ergodic Theory and Probability (Proc. Conf., Ohio State Univ., Columbus, Ohio, 1970)
(1970) 158–177. Lecture Notes in Math., Vol. 160
Math Reviews MR0414823 (54 \#2915)
49
Krengel, Ulrich
Ergodic theorems
Walter de Gruyter Co., Berlin, 1985
Math Reviews MR797411 (87i:28001)
50
Kechris, A. S. and Solecki, S. and Todorcevic, S.
Borel chromatic numbers
Adv. Math. 141 (1999) 1–44
Math Reviews MR1667145 (2000e:03132)
51
Katznelson, Y. and Weiss, Benjamin
The classification of nonsingular actions, revisited
Ergodic Theory Dynam. Systems 11 (1991) 333–348
Math Reviews MR1116644 (92i:28018)
52
Lindenstrauss, Elon
Pointwise theorems for amenable groups
Invent. Math. 146 (2001) 259–295
Math Reviews MR1865397 (2002h:37005)
53
Mackey, George W.
Ergodic theory and virtual groups
Math. Ann. 166 (1966) 187–207
Math Reviews MR0201562 (34 \#1444)
54
Maharam, D.
Incompressible transformations
Fund. Math. 56 (1964) 35–50
Math Reviews MR0169988 (30 \#229)
55
Moore, Calvin C.
Virtual groups 45 years later
in Group representations, ergodic theory, and mathematical physics: a tribute to George W. Mackey
Contemp. Math. 449 (2008) 263–300
Math Reviews MR2391808 (2009g:22013)
56
Nevo, Amos
Harmonic analysis and pointwise ergodic theorems for noncommuting transformations
J. Amer. Math. Soc. 7 (1994) 875–902
Math Reviews MR1266737 (95h:22006)
57
Nevo, Amos
Pointwise ergodic theorems for actions of groups
in Handbook of dynamical systems. Vol. 1B
(2006) 871–982
Math Reviews MR2186253 (2006k:37006)
58
Nevo, Amos and Stein, Elias M.
A generalization of Birkhoff's pointwise ergodic theorem
Acta Math. 173 (1994) 135–154
Math Reviews MR1294672 (95m:28025)
59
Okayasu, Rui
Type III factors arising from Cuntz-Krieger algebras
Proc. Amer. Math. Soc. 131 (2003) 2145–2153
Math Reviews MR1963761 (2004i:46093)
60
Ornstein, Donald S. and Weiss, Benjamin
Entropy and isomorphism theorems for actions of amenable groups
J. Analyse Math. 48 (1987) 1–141
Math Reviews MR910005 (88j:28014)
61
Patterson, S. J.
The limit set of a Fuchsian group
Acta Math. 136 (1976) 241–273
Math Reviews MR0450547 (56 \#8841)
62
Pollicott, Mark and Sharp, Richard
Ergodic theorems for actions of hyperbolic groups
Proc. Amer. Math. Soc. 141 (2013) 1749–1757
Math Reviews MR3020860
63
Ramagge, Jacqui and Robertson, Guyan
Factors from trees
Proc. Amer. Math. Soc. 125 (1997) 2051–2055
Math Reviews MR1377004 (97i:46108)
64
Sullivan, Dennis
On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions
in Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978)
Ann. of Math. Stud. 97 (1981) 465–496
Math Reviews MR624833 (83f:58052)
65
Sullivan, Dennis
Discrete conformal groups and measurable dynamics
Bull. Amer. Math. Soc. (N.S.) 6 (1982) 57–73
Math Reviews MR634434 (83c:58066)
66
Tempelman, A. A.
Ergodic theorems for general dynamical systems
Dokl. Akad. Nauk SSSR 176 (1967) 790–793 ; translation: Soviet Math. Dokl. 8 (1967), 1213–1216
Math Reviews MR0219700 (36 \#2779)
67
Tessera, Romain
Volume of spheres in doubling metric measured spaces and in groups of polynomial growth
Bull. Soc. Math. France 135 (2007) 47–64
Math Reviews MR2430198 (2009h:53086)
68
Väisälä, Jussi
Gromov hyperbolic spaces
Expo. Math. 23 (2005) 187–231
Math Reviews MR2164775 (2006j:53055)
69
von Neumann, J.
Proof of the quasi-ergodic hypothesis
Proc. Nat. Acad. Sci. USA 18 (1932) 70–82
70
Weiss, Benjamin
Actions of amenable groups
in Topics in dynamics and ergodic theory
London Math. Soc. Lecture Note Ser. 310 (2003) 226–262
Math Reviews MR2052281 (2005d:37008)
71
Wiener, Norbert
The ergodic theorem
Duke Math. J. 5 (1939) 1–18
Math Reviews MR1546100
72
Zimmer, Robert J.
Amenable ergodic group actions and an application to Poisson boundaries of random walks
J. Functional Analysis 27 (1978) 350–372
Math Reviews MR0473096 (57 \#12775)