Catalogue et commandes en ligne (paiement sécurisé, VISA ou MASTERCARD uniquement)

Revues disponibles par abonnement

Annales scientifiques de l'ENS

Astérisque

Bulletin de la SMF

Mémoires de la SMF

Revue d'Histoire des Mathématiques

Gazette des Mathématiciens

Séries de livres

Astérisque

Cours Spécialisés

Documents Mathématiques

Mémoires de la SMF

Panoramas et Synthèses

Séminaires et Congrès

Série Chaire Jean Morlet

SMF/AMS Texts and Monographs

La Série T

Fascicules « Journée Annuelle »

Autres livres

Donald E. Knuth - traductions françaises

Rééditions du Séminaire Nicolas Bourbaki

Rééditions des Œuvres de Jean Leray

Revue de l'Institut Elie Cartan

Editions électroniques

Annales scientifiques de l'ENS

Bulletin de la SMF

Revue d'Histoire des Mathématiques

Séminaires et Congrès

Plus d'information / Abonnement

Publications grand public

L'explosion des mathématiques (smf.emath.fr)

Mathématiques L'explosion continue (smf.emath.fr)

Zoom sur les métiers des maths (smf.emath.fr)

Zoom sur les métiers des mathématiques et de l'informatique (smf.emath.fr)

Où en sont les mathématiques ?

La Série T

Pour les auteurs

Soumission des manuscrits

Formats et documentation

Plus d'info

Liste de diffusion électronique (smf.emath.fr)

Information pour les libraires et diffuseurs (smf.emath.fr)

Publications de la SMF
fr en
Votre numéro IP : 54.227.6.156
Accès aux édit. élec. : SémCong

Annales scientifiques de l'ENS

Présentation de la publication

Parutions

Dernières parutions

Comité de rédaction / Secrétariat

Série 4 :
Série 3 :
Série 2 :
Série 1 :

Faire une recherche


Catalogue & commande

Annales scientifiques de l'ENS - Parutions - série 4, 47 (2014)

Parutions < série 4, 47

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE, série 4 47, fascicule 2 (2014)

Semyon Dyatlov, Colin Guillarmou
Microlocal limits of plane waves and Eisenstein functions
Annales scientifiques de l'ENS 47, fascicule 2 (2014), 371-448

Télécharger cet article : Fichier PDF

Résumé :
Limites microlocales des ondes planes et les fonctions d'Eisenstein
Dans ce travail, nous étudions les mesures microlocales des fonctions de type ondes planes sur des variétés non compactes (M,g) qui, près de l'infini, sont euclidiennes ou asymptotiquement hyperboliques avec courbure -1. Les ondes planes E(z,) sont des fonctions sur M paramétrées par la racine carrée de l'énergie z et la direction de l'onde, interprétée comme un point à l'infini. Si l'ensemble capté K pour le flot géodésique est de mesure de Liouville nulle, nous montrons que, quand z+, E(z,) converge microlocalement vers une certaine mesure _, en moyenne en et en énergie z sur des intervalles de taille fixe. On exprime la vitesse de convergence vers la limite en fonction de la vitesse de fuite du flot géodésique et de son taux maximal d'expansion. Quand le flot est Axiom A sur K, la vitesse de convergence est une puissance négative de z. Enfin, en guise d'application, nous donnons des développements asymptotiques de type Weyl à plusieurs termes pour les traces locales de projecteurs spectraux, avec un reste dépendant de la vitesse de fuite du flot.

Mots-clefs : Mesures semi-classiques, ondes planes, fonctions d'Eisenstein, loi de Weyl.

Abstract:
We study microlocal limits of plane waves on noncompact Riemannian manifolds (M,g) which are either Euclidean or asymptotically hyperbolic with curvature -1 near infinity. The plane waves E(z,) are functions on M parametrized by the square root of energy z and the direction of the wave, , interpreted as a point at infinity. If the trapped set K for the geodesic flow has Liouville measure zero, we show that, as z+, E(z,) microlocally converges to a measure _, in average on energy intervals of fixed size, [z,z+1], and in . We express the rate of convergence to the limit in terms of the classical escape rate of the geodesic flow and its maximal expansion rate—when the flow is Axiom A on the trapped set, this yields a negative power of z. As an application, we obtain Weyl type asymptotic expansions for local traces of spectral projectors with a remainder controlled in terms of the classical escape rate.

Keywords: Semiclassical measures, plane waves, Eisenstein functions, Weyl law.

Class. math. : 58J50; 58J40, 30F35, 30F45


ISSN : 0012-9593
Publié avec le concours de : Centre National de la Recherche Scientifique

Bibliographie:

1
Anantharaman, Nalini and Nonnenmacher, Stéphane
Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold
Ann. Inst. Fourier (Grenoble) 57 (2007) 2465–2523
Math Reviews MR2394549 (2009m:81076)
2
Bouzouina, A. and Robert, Didier
Uniform semiclassical estimates for the propagation of quantum observables
Duke Math. J. 111 (2002) 223–252
Math Reviews MR1882134 (2003b:81049)
3
Bowen, Rufus and Ruelle, David
The ergodic theory of Axiom A flows
Invent. Math. 29 (1975) 181–202
Math Reviews MR0380889 (52 \#1786)
4
Burq, Nicolas
Semi-classical estimates for the resolvent in nontrapping geometries
Int. Math. Res. Not. 2002 (2002) 221–241
Math Reviews MR1876933 (2002k:81069)
5
Burq, Nicolas
Quantum ergodicity of boundary values of eigenfunctions: a control theory approach
Canad. Math. Bull. 48 (2005) 3–15
Math Reviews MR2118759 (2006a:58036)
6
Chernoff, Paul R.
Essential self-adjointness of powers of generators of hyperbolic equations
J. Functional Analysis 12 (1973) 401–414
Math Reviews MR0369890 (51 \#6119)
7
Colin de Verdière, Y.
Ergodicité et fonctions propres du laplacien
Comm. Math. Phys. 102 (1985) 497–502
Math Reviews MR818831 (87d:58145)
8
Dimassi, Mouez and Sjöstrand, Johannes
Spectral asymptotics in the semi-classical limit
Cambridge Univ. Press, 1999
Math Reviews MR1735654 (2001b:35237)
9
Duistermaat, J. J. and Guillemin, V. W.
The spectrum of positive elliptic operators and periodic bicharacteristics
Invent. Math. 29 (1975) 39–79
Math Reviews MR0405514 (53 \#9307)
10
Dyatlov, Semyon
Asymptotic distribution of quasi-normal modes for Kerr–de Sitter black holes
Ann. Henri Poincaré 13 (2012) 1101–1166
Math Reviews MR2935116
11
Dyatlov, Semyon
Microlocal limits of Eisenstein functions away from the unitarity axis
J. Spectr. Theory 2 (2012) 181–202
Math Reviews MR2913877
12
Dyatlov, Semyon and Guillarmou, Colin
Scattering phase asymptotics with fractal remainders
Comm. Math. Phys. 324 (2013) 425–444
Math Reviews MR3117516
13
Dyatlov, Semyon and Zworski, Maciej
Quantum ergodicity for restrictions to hypersurfaces
Nonlinearity 26 (2013) 35–52
Math Reviews MR3001760
14
Fathi, Albert
Expansiveness, hyperbolicity and Hausdorff dimension
Comm. Math. Phys. 126 (1989) 249–262
Math Reviews MR1027497 (90m:58159)
15
Gérard, C. and Sjöstrand, Johannes
Semiclassical resonances generated by a closed trajectory of hyperbolic type
Comm. Math. Phys. 108 (1987) 391–421
Math Reviews MR874901 (88k:58151)
16
Gérard, Patrick and Leichtnam, Éric
Ergodic properties of eigenfunctions for the Dirichlet problem
Duke Math. J. 71 (1993) 559–607
Math Reviews MR1233448 (94i:35146)
17
Graham, C. Robin and Lee, John M.
Einstein metrics with prescribed conformal infinity on the ball
Adv. Math. 87 (1991) 186–225
Math Reviews MR1112625 (92i:53041)
18
Grigis, Alain and Sjöstrand, Johannes
Microlocal analysis for differential operators
Cambridge Univ. Press, 1994
Math Reviews MR1269107 (95d:35009)
19
Guillarmou, Colin
Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds
Duke Math. J. 129 (2005) 1–37
Math Reviews MR2153454 (2006k:58051)
Zentralblatt 636.58034
20
Guillarmou, Colin and Naud, F.
Equidistribution of Eisenstein series on convex co-compact hyperbolic manifolds
Amer. J. Math. 136 (2014) 445–479
21
Guillemin, V. W. and Sternberg, S.
Geometric asymptotics
AMS, 1990
22
Guillopé, Laurent and Zworski, Maciej
Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature near infinity
Asymptotic Anal. 11 (1995) 1–22
Math Reviews MR1344252 (96h:58172)
23
Hassell, Andrew and Vasy, András
The spectral projections and the resolvent for scattering metrics
J. Anal. Math. 79 (1999) 241–298
Math Reviews MR1749314 (2001d:58034)
24
Hassell, Andrew and Zelditch, Steve
Quantum ergodicity of boundary values of eigenfunctions
Comm. Math. Phys. 248 (2004) 119–168
Math Reviews MR2104608 (2005h:35255)
25
Helffer, B. and Martinez, A. and Robert, Didier
Ergodicité et limite semi-classique
Comm. Math. Phys. 109 (1987) 313–326
Math Reviews MR880418 (88e:81029)
26
Helffer, B. and Robert, Didier
Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles
J. Funct. Anal. 53 (1983) 246–268
Math Reviews MR724029 (85i:47052)
27
Hörmander, Lars
The analysis of linear partial differential operators. III
Springer, 1985
Math Reviews MR781536 (87d:35002a)
Zentralblatt 521.35001
28
Hörmander, Lars
The analysis of linear partial differential operators. IV
Springer, 1985
Math Reviews MR781537 (87d:35002b)
Zentralblatt 601.35001
29
Jakobson, Dmitry
Quantum unique ergodicity for Eisenstein series on PSL2(<b>Z</b>)PSL2(<b>R</b>)
Ann. Inst. Fourier (Grenoble) 44 (1994) 1477–1504
Math Reviews MR1313792 (96b:11068)
30
Kifer, Yuri
Large deviations in dynamical systems and stochastic processes
Trans. Amer. Math. Soc. 321 (1990) 505–524
Math Reviews MR1025756 (91e:60091)
31
Lindenstrauss, Elon
Invariant measures and arithmetic quantum unique ergodicity
Ann. of Math. 163 (2006) 165–219
Math Reviews MR2195133 (2007b:11072)
32
Luo, Wen Zhi and Sarnak, Peter
Quantum ergodicity of eigenfunctions on PSL2(Z)H2
Publ. Math. I.H.É.S. 81 (1995) 207–237
Math Reviews MR1361757 (97f:11037)
33
Mazzeo, Rafe R.
Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds
Amer. J. Math. 113 (1991) 25–45
Math Reviews MR1087800 (92f:58187)
34
Mazzeo, Rafe R. and Melrose, Richard B.
Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature
J. Funct. Anal. 75 (1987) 260–310
Math Reviews MR916753 (89c:58133)
35
Melrose, Richard B.
Geometric scattering theory
Cambridge Univ. Press, 1995
Math Reviews MR1350074 (96k:35129)
36
37
Melrose, Richard B. and Zworski, Maciej
Scattering metrics and geodesic flow at infinity
Invent. Math. 124 (1996) 389–436
Math Reviews MR1369423 (96k:58230)
38
Nicholls, Peter J.
The ergodic theory of discrete groups
Cambridge Univ. Press, 1989
Math Reviews MR1041575 (91i:58104)
39
Nonnenmacher, Stéphane
Spectral problems in open quantum chaos
Nonlinearity 24 (2011) 123–167
40
Nonnenmacher, Stéphane and Zworski, Maciej
Quantum decay rates in chaotic scattering
Acta Math. 203 (2009) 149–233
Math Reviews MR2570070 (2011c:58063)
41
Patterson, S. J.
The limit set of a Fuchsian group
Acta Math. 136 (1976) 241–273
Math Reviews MR0450547 (56 \#8841)
42
Pesin, Ya. B. and Sadovskaya, V.
Multifractal analysis of conformal Axiom A flows
Comm. Math. Phys. 216 (2001) 277–312
Math Reviews MR1814848 (2002g:37035)
43
Petkov, Vesselin and Robert, Didier
Asymptotique semi-classique du spectre d'hamiltoniens quantiques et trajectoires classiques périodiques
Comm. Partial Differential Equations 10 (1985) 365–390
Math Reviews MR784682 (86m:35130)
44
Rivière, Gabriel
Entropy of semiclassical measures in dimension 2
Duke Math. J. 155 (2010) 271–336
Math Reviews MR2736167 (2012a:58056)
45
Robert, Didier
Autour de l'approximation semi-classique
Birkhäuser, 1987
Math Reviews MR897108 (89g:81016)
46
Robert, Didier and Tamura, H.
Semi-classical asymptotics for local spectral densities and time delay problems in scattering processes
J. Funct. Anal. 80 (1988) 124–147
Math Reviews MR960227 (90g:35124)
47
Sarnak, Peter
Recent progress on the quantum unique ergodicity conjecture
Bull. Amer. Math. Soc. (N.S.) 48 (2011) 211–228
Math Reviews MR2774090 (2012e:58062)
48
Šnirelman, A. I.
Ergodic properties of eigenfunctions
Uspehi Mat. Nauk 29 (1974) 181–182
Math Reviews MR0402834 (53 \#6648)
49
Soundararajan, Kannan
Quantum unique ergodicity for SL2(Z)H
Ann. of Math. 172 (2010) 1529–1538
Math Reviews MR2680500 (2011j:11098)
50
Sullivan, Dennis
The density at infinity of a discrete group of hyperbolic motions
Publ. Math. I.H.É.S. 50 (1979) 171–202
Math Reviews MR556586 (81b:58031)
51
Sullivan, Dennis
Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups
Acta Math. 153 (1984) 259–277
Math Reviews MR766265 (86c:58093)
Zentralblatt 439.30034
52
Toth, John A. and Zelditch, Steve
Quantum ergodic restriction theorems. I: Interior hypersurfaces in domains wth ergodic billiards
Ann. Henri Poincaré 13 (2012) 599–670
Math Reviews MR2913617
53
Toth, John A. and Zelditch, Steve
Quantum ergodic restriction theorems: manifolds without boundary
Geom. Funct. Anal. 23 (2013) 715–775
Math Reviews MR3053760
54
Vasy, András
Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces (with an appendix by Semyon Dyatlov)
Invent. Math. 194 (2013) 381–513
Math Reviews MR3117526
55
Vasy, András
Microlocal analysis of asymptotically hyperbolic spaces and high energy resolvent estimates
Math. Sci. Res. Inst. Publ. 60 (2012) 487–528
56
Vũ Ngoc, San
Systèmes intégrables semi-classiques: du local au global
Soc. Math. France, 2006
Math Reviews MR2331010 (2008e:37056)
57
Young, Lai-Sang
Large deviations in dynamical systems
Trans. Amer. Math. Soc. 318 (1990) 525–543
Math Reviews MR975689 (90g:58069)
58
Zelditch, Steve
Uniform distribution of eigenfunctions on compact hyperbolic surfaces
Duke Math. J. 55 (1987) 919–941
Math Reviews MR916129 (89d:58129)
59
Zelditch, Steve
Mean Lindelöf hypothesis and equidistribution of cusp forms and Eisenstein series
J. Funct. Anal. 97 (1991) 1–49
Math Reviews MR1105653 (92h:11046)
60
Zelditch, Steve
Recent developments in mathematical quantum chaos
in Current developments in mathematics, 2009
(2010) 115–204
Math Reviews MR2757360 (2012b:58054)
61
Zelditch, Steve and Zworski, Maciej
Ergodicity of eigenfunctions for ergodic billiards
Comm. Math. Phys. 175 (1996) 673–682
Math Reviews MR1372814 (97a:58193)
62
Zworski, Maciej
Semiclassical analysis
Amer. Math. Soc., 2012
Math Reviews MR2952218