Catalogue et commandes en ligne (paiement sécurisé, VISA ou MASTERCARD uniquement)

Revues disponibles par abonnement

Annales scientifiques de l'ENS

Astérisque

Bulletin de la SMF

Mémoires de la SMF

Revue d'Histoire des Mathématiques

Gazette des Mathématiciens

Séries de livres

Astérisque

Cours Spécialisés

Documents Mathématiques

Mémoires de la SMF

Panoramas et Synthèses

Séminaires et Congrès

Série Chaire Jean Morlet

SMF/AMS Texts and Monographs

La Série T

Fascicules « Journée Annuelle »

Autres livres

Donald E. Knuth - traductions françaises

Rééditions du Séminaire Nicolas Bourbaki

Rééditions des Œuvres de Jean Leray

Revue de l'Institut Elie Cartan

Editions électroniques

Annales scientifiques de l'ENS

Bulletin de la SMF

Revue d'Histoire des Mathématiques

Séminaires et Congrès

Plus d'information / Abonnement

Publications grand public

L'explosion des mathématiques (smf.emath.fr)

Mathématiques L'explosion continue (smf.emath.fr)

Zoom sur les métiers des maths (smf.emath.fr)

Zoom sur les métiers des mathématiques et de l'informatique (smf.emath.fr)

Où en sont les mathématiques ?

La Série T

Pour les auteurs

Soumission des manuscrits

Formats et documentation

Plus d'info

Liste de diffusion électronique (smf.emath.fr)

Information pour les libraires et diffuseurs (smf.emath.fr)

Publications de la SMF
fr en
Votre numéro IP : 54.226.41.91
Accès aux édit. élec. : SémCong

Annales scientifiques de l'ENS

Présentation de la publication

Parutions

Dernières parutions

Comité de rédaction / Secrétariat

Série 4 :
Série 3 :
Série 2 :
Série 1 :

Faire une recherche


Catalogue & commande

Annales scientifiques de l'ENS - Parutions - série 4, 45 (2012)

Parutions < série 4, 45

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE, série 4 45, fascicule 5 (2012)

Wen-Wei Li
La formule des traces pour les revêtements de groupes réductifs connexes. II. Analyse harmonique locale
Annales scientifiques de l'ENS 45, fascicule 5 (2012), 787-859

Télécharger cet article : Fichier PDF
Acheter l'ouvrage

Résumé :
On établit des résultats de l'analyse harmonique locale nécessaires pour la formule des traces invariante d'Arthur pour les revêtements de groupes réductifs connexes. Plus précisément, on démontre pour les revêtements locaux (1) la formule de Plancherel et des préparatifs reliés, (2) la normalisation des opérateurs d'entrelacement soumise aux conditions d'Arthur, (3) le comportement local de caractères de représentations admissibles dans le cas non archimédien, et (4) la partie spécifique de la formule des traces locale invariante. Comme un sous-produit de la démonstration de la formule des traces locale invariante, on obtient aussi la densité de caractères tempérés pour les revêtements.

Mots-clefs : Arthur-Selberg trace formula, local trace formula, covering groups.

Abstract:
The trace formula for coverings of connected reductive groups. II. Local harmonic analysis
We establish some results in local harmonic analysis which are necessary for Arthur's invariant trace formula for coverings of connected reductive groups. More precisely, for local coverings we will study (1) the Plancherel formula and its preparations, (2) the normalization of intertwining operators subject to Arthur's conditions, (3) the local behavior of characters of admissible representations in the nonarchimedean case, and (4) the genuine part of the invariant local trace formula. As a byproduct of the invariant local trace formula, we deduce the density of tempered characters for coverings.

Keywords: Formule des traces d'Arthur-Selberg, formule des traces locale, revêtements de groupes.

Class. math. : 11F72; 11F70


ISSN : 0012-9593
Publié avec le concours de : Centre National de la Recherche Scientifique

Bibliographie:

1
Gan, Wee-Teck and Gross, Benedict and Prasad, Dipendra
Symplectic local root numbers, central critical L-values and restriction problems in the representation theory of classical groups
Preprint
2
Wallach, Nolan R.
Real reductive groups. I
Academic Press Inc., 1988
Math Reviews MR929683 (89i:22029)
3
Wallach, Nolan R.
Real reductive groups. II
Academic Press Inc., 1992
Math Reviews MR1170566 (93m:22018)
4
Adler, Jeffrey D. and DeBacker, Stephen
Some applications of Bruhat-Tits theory to harmonic analysis on the Lie algebra of a reductive p-adic group
Michigan Math. J. 50 (2002) 263–286
Math Reviews MR1914065 (2003g:22016)
5
Arthur, James
An introduction to the trace formula
in Harmonic analysis, the trace formula, and Shimura varieties
Clay Math. Proc. 4 (2005) 1–263
Math Reviews MR2192011
6
Arthur, James
Harmonic analysis of tempered distributions on semisimple Lie groups of real rank one
in Representation theory and harmonic analysis on semisimple Lie groups
Math. Surveys Monogr. 31 (1989) 13–100 Dissertation, Yale University, New Haven, CT, 1970
Math Reviews MR1011896 (91f:22014)
7
Arthur, James
A theorem on the Schwartz space of a reductive Lie group
Proc. Nat. Acad. Sci. U.S.A. 72 (1975) 4718–4719
Math Reviews MR0460539 (57 \#532)
8
Arthur, James
A trace formula for reductive groups. I. Terms associated to classes in G(<b>Q</b>)
Duke Math. J. 45 (1978) 911–952
9
Arthur, James
A trace formula for reductive groups. II. Applications of a truncation operator
Compositio Math. 40 (1980) 87–121
10
Arthur, James
The trace formula in invariant form
Ann. of Math. 114 (1981) 1–74
Math Reviews MR625344
11
Arthur, James
On the inner product of truncated Eisenstein series
Duke Math. J. 49 (1982) 35–70
Math Reviews MR650368
12
Arthur, James
On a family of distributions obtained from Eisenstein series. I. Application of the Paley-Wiener theorem
Amer. J. Math. 104 (1982) 1243–1288
Math Reviews MR681737
13
Arthur, James
On a family of distributions obtained from Eisenstein series. II. Explicit formulas
Amer. J. Math. 104 (1982) 1289–1336
Math Reviews MR681738
14
Arthur, James
A Paley-Wiener theorem for real reductive groups
Acta Math. 150 (1983) 1–89
Math Reviews MR697608 (84k:22021)
15
Arthur, James
A measure on the unipotent variety
Canad. J. Math. 37 (1985) 1237–1274
Math Reviews MR828844
16
Arthur, James
On a family of distributions obtained from orbits
Canad. J. Math. 38 (1986) 179–214
Math Reviews MR835041
17
Arthur, James
The local behaviour of weighted orbital integrals
Duke Math. J. 56 (1988) 223–293
Math Reviews MR932848
18
Arthur, James
The invariant trace formula. I. Local theory
J. Amer. Math. Soc. 1 (1988) 323–383
Math Reviews MR928262
19
Arthur, James
The invariant trace formula. II. Global theory
J. Amer. Math. Soc. 1 (1988) 501–554
Math Reviews MR939691
20
Arthur, James
Intertwining operators and residues. I. Weighted characters
J. Funct. Anal. 84 (1989) 19–84
Math Reviews MR999488
21
Arthur, James
A local trace formula
Publ. Math. I.H.É.S. 73 (1991) 5–96
22
Arthur, James
Some problems in local harmonic analysis
in Harmonic analysis on reductive groups (Brunswick, ME, 1989)
Progr. Math. 101 (1991) 57–78
Math Reviews MR1168477
23
Arthur, James
On elliptic tempered characters
Acta Math. 171 (1993) 73–138
Math Reviews MR1237898
24
Arthur, James
On the Fourier transforms of weighted orbital integrals
J. reine angew. Math. 452 (1994) 163–217
Math Reviews MR1282200
25
Arthur, James
The trace Paley-Wiener theorem for Schwartz functions
in Representation theory and analysis on homogeneous spaces (New Brunswick, NJ, 1993)
Contemp. Math. 177 (1994) 171–180
Math Reviews MR1303605 (95k:22010)
26
Arthur, James
On local character relations
Selecta Math. (N.S.) 2 (1996) 501–579
Math Reviews MR1443184
27
Arthur, James
Canonical normalization of weighted characters and a transfer conjecture
C. R. Math. Acad. Sci. Soc. R. Can. 20 (1998) 33–52
Math Reviews MR1623485
28
Arthur, James
On the transfer of distributions: weighted orbital integrals
Duke Math. J. 99 (1999) 209–283
Math Reviews MR1708030
29
Arthur, James
A stable trace formula. II. Global descent
Invent. Math. 143 (2001) 157–220
Math Reviews MR1802795 (2002m:11043)
30
Arthur, James
A stable trace formula. I. General expansions
J. Inst. Math. Jussieu 1 (2002) 175–277
Math Reviews MR1954821
31
Arthur, James
A stable trace formula. III. Proof of the main theorems
Ann. of Math. 158 (2003) 769–873
Math Reviews MR2031854 (2004m:11079)
32
Berstein, Joseph and Deligne, Pierre and Kazhdan, David and Vigneras, Marie-France
Représentations des groupes sur un corps local
Hermann, 1984
33
Brylinski, Jean-Luc and Deligne, Pierre
Central extensions of reductive groups by K_2
Publ. Math. I.H.É.S. 94 (2001) 5–85
Math Reviews MR1896177
34
Bouaziz, Abderrazak
Intégrales orbitales sur les algèbres de Lie réductives
Invent. Math. 115 (1994) 163–207
Math Reviews MR1248081
35
Bouaziz, Abderrazak
Intégrales orbitales sur les groupes de Lie réductifs
Ann. Sci. École Norm. Sup. 27 (1994) 573–609
Math Reviews MR1296557 (95g:22020)
36
Bruhat, F. and Tits, J.
Groupes réductifs sur un corps local I: données radicielles valuées
Publ. Math. I.H.É.S. 41 (1972) 5–251
Math Reviews MR0327923
37
Bruhat, F. and Tits, J.
Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d'une donnée radicielle valuée
Publ. Math. I.H.É.S. 60 (1984) 197–376
Math Reviews MR756316
38
Bruhat, F. and Tits, J.
Schémas en groupes et immeubles des groupes classiques sur un corps local. II. Groupes unitaires
Bull. Soc. Math. France 115 (1987) 141–195
Math Reviews MR919421
39
Bernšten, I. N. and Zelevinski, A. V.
Representations of the group GL(n,F), where F is a local non-Archimedean field
Uspehi Mat. Nauk 31 (1976) 5–70
Math Reviews MR0425030 (54 \#12988)
40
Bernstein, I. N. and Zelevinsky, A. V.
Induced representations of reductive p-adic groups. I
Ann. Sci. École Norm. Sup. 10 (1977) 441–472
Math Reviews MR0579172 (58 \#28310)
41
Cartier, P.
Representations of p-adic groups: a survey
in Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1
Proc. Sympos. Pure Math., XXXIII (1979) 111–155
Math Reviews MR546593
42
Clozel, Laurent
Characters of nonconnected, reductive p-adic groups
Canad. J. Math. 39 (1987) 149–167
Math Reviews MR889110 (88i:22039)
43
Clozel, Laurent and Delorme, P.
Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs
Invent. Math. 77 (1984) 427–453
Math Reviews MR759263 (86b:22015)
44
Clozel, Laurent and Labesse, Jean-Pierre and Langlands, Robert
Morning Seminar on the Trace Formula
Institute for Advanced Study, 1984 lecture notes
45
Conway, John B.
A course in operator theory
Amer. Math. Soc., 2000
Math Reviews MR1721402 (2001d:47001)
46
Donnelly, Harold
On the cuspidal spectrum for finite volume symmetric spaces
J. Differential Geom. 17 (1982) 239–253
Math Reviews MR664496 (83m:58079)
47
Flicker, Yuval Z.
Automorphic forms on covering groups of GL(2)
Invent. Math. 57 (1980) 119–182
Math Reviews MR567194
48
Finis, Tobias and Lapid, Erez and Müller, Werner
On the spectral side of Arthur’s trace formula — absolute convergence
Annals of Mathematics 174 (2011)
49
Müller, W.
On the spectral side of the Arthur trace formula
Geom. Funct. Anal. 12 (2002) 669–722
Math Reviews MR1935546 (2003k:11086)
50
Harish-Chandra
Discrete series for semisimple Lie groups. II. Explicit determination of the characters
Acta Math. 116 (1966) 1–111
Math Reviews MR0219666 (36 \#2745)
51
Harish-Chandra
Harmonic analysis on real reductive groups. III. The Maass-Selberg relations and the Plancherel formula
Ann. of Math. 104 (1976) 117–201
Math Reviews MR0439994 (55 \#12875)
52
Harish-Chandra
Admissible invariant distributions on reductive p-adic groups
Amer. Math. Soc., 1999
Math Reviews MR1702257
53
Huang, Jing-Song
Metaplectic correspondences and unitary representations
Compositio Math. 80 (1991) 309–322
Math Reviews MR1134258
54
Hanzer, Marcela and Muić, Goran
Parabolic induction and Jacquet functors for metaplectic groups
J. Algebra 323 (2010) 241–260
Math Reviews MR2564837 (2011b:22026)
55
Jantzen, Chris
On the Iwahori-Matsumoto involution and applications
Ann. Sci. École Norm. Sup. 28 (1995) 527–547
Math Reviews MR1341660
56
Kazhdan, David
Cuspidal geometry of p-adic groups
J. Analyse Math. 47 (1986) 1–36
Math Reviews MR874042 (88g:22017)
57
Keys, D.
Reducibility of unramified unitary principal series representations of p-adic groups and class-1 representations
Math. Ann. 260 (1982) 397–402
Math Reviews MR670188
58
Konno, Takuya
A note on the Langlands classification and irreducibility of induced representations of p-adic groups
Kyushu J. Math. 57 (2003) 383–409
Math Reviews MR2050093 (2005b:22020)
59
Knapp, Anthony W. and Zuckerman, Gregg
Classification theorems for representations of semisimple Lie groups
in Non-commutative harmonic analysis (Actes Colloq., Marseille-Luminy, 1976)
Lecture Notes in Math. 587 (1977) 138–159
Math Reviews MR0476923 (57 \#16474)
60
Knapp, Anthony W. and Vogan, David A. Jr.
Cohomological induction and unitary representations
Princeton Univ. Press, 1995
Math Reviews MR1330919 (96c:22023)
61
Flicker, Yuval Z. and Kazhdan, David A.
Metaplectic correspondence
Publ. Math. I.H.É.S. 64 (1986) 53–110
62
Kazhdan, David A. and Patterson, S. J.
Metaplectic forms
Publ. Math. I.H.É.S. 59 (1984) 35–142
Math Reviews MR743816 (85g:22033)
63
Knapp, Anthony W. and Stein, E. M.
Intertwining operators for semisimple groups. II
Invent. Math. 60 (1980) 9–84
Math Reviews MR582703
64
Langlands, Robert P.
Eisenstein series
in Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965)
(1966) 235–252
Math Reviews MR0249539 (40 \#2784)
65
Langlands, Robert P.
On the functional equations satisfied by Eisenstein series
Springer, 1976
Math Reviews MR0579181 (58 \#28319)
66
Langlands, Robert P.
On the classification of irreducible representations of real algebraic groups
in Representation theory and harmonic analysis on semisimple Lie groups
Math. Surveys Monogr. 31 (1989) 101–170
Math Reviews MR1011897
67
68
Lusztig, G. and Spaltenstein, N.
Induced unipotent classes
J. London Math. Soc. 19 (1979) 41–52
Math Reviews MR527733
69
Matsumoto, Hideya
Sur les sous-groupes arithmétiques des groupes semi-simples déployés
Ann. Sci. École Norm. Sup. 2 (1969) 1–62
Math Reviews MR0240214
70
McGovern, William M.
The adjoint representation and the adjoint action
in Algebraic quotients. Torus actions and cohomology. The adjoint representation and the adjoint action
Encyclopaedia Math. Sci. 131 (2002) 159–238
Math Reviews MR1925831
71
Mezo, Paul
Comparisons of general linear groups and their metaplectic coverings. II
Represent. Theory 5 (2001) 524–580
Math Reviews MR1870602
72
Mezo, Paul
Comparisons of general linear groups and their metaplectic coverings. I
Canad. J. Math 54 (2002) 92–137
73
Mœglin, Colette and Waldspurger, Jean-Loup
Décomposition spectrale et séries d'Eisenstein
Birkhäuser, 1994 Une paraphrase de l'Écriture.
Math Reviews MR1261867
74
McNamara, Peter J.
Principal series representations of metaplectic groups over local fields
(2009) arXiv:0911.2274
75
McNamara, Peter J.
Metaplectic Whittaker functions and crystal bases
Duke Math. J. 156 (2011) 1–31
Math Reviews MR2746386 (2012a:11060)
76
Osborne, M. Scott and Warner, Garth
The theory of Eisenstein systems
Academic Press Inc., 1981
Math Reviews MR643242 (83j:10034)
77
Prasad, Amritanshu
On Bernstein's presentation of Iwahori-Hecke algebras and representations of split reductive groups over non-Archimedean local fields
Bulletin of Kerala Mathematics Association Special Issue (2005) 31–51 (2007) arXiv:math/0504417
Math Reviews MR2250034
78
Reeder, Mark
Nonstandard intertwining operators and the structure of unramified principal series representations
Forum Math. 9 (1997) 457–516
Math Reviews MR1457135
79
Ranga Rao, R.
Orbital integrals in reductive groups
Ann. of Math. 96 (1972) 505–510
Math Reviews MR0320232
80
Savin, Gordan
On unramified representations of covering groups
J. reine angew. Math. 566 (2004) 111–134
Math Reviews MR2039325
81
Grothendieck, Alexander and Raynaud, Michèle
Revêtements étales et groupe fondamental (SGA 1)
Soc. Math. France, 2003 Séminaire de géométrie algébrique du Bois Marie 1960–61.
Math Reviews MR2017446
82
Schémas en groupes. I: Propriétés générales des schémas en groupes
Springer, 1970
Math Reviews MR0274458
83
Silberger, Allan J.
The Knapp-Stein dimension theorem for p-adic groups
Proc. Amer. Math. Soc. 68 (1978) 243–246
Math Reviews MR0492091 (58 \#11245)
84
Silberger, Allan J.
Correction: ``The Knapp-Stein dimension theorem for p-adic groups''[Proc. Amer. Math. Soc. 68 (1978), no. 2, 243–246;MR 58 11245]
Proc. Amer. Math. Soc. 76 (1979) 169–170
Math Reviews MR534411 (81m:22026)
85
Steinberg, Robert
Lectures on Chevalley groups
Yale University, New Haven, Conn., 1968 Notes prepared by John Faulkner and Robert Wilson
Math Reviews MR0466335
86
Vogan, David A. Jr.
The algebraic structure of the representation of semisimple Lie groups. I
Ann. of Math. 109 (1979) 1–60
Math Reviews MR519352 (81j:22020)
87
Waldspurger, Jean-Loup
La formule de Plancherel pour les groupes p-adiques (d'après Harish-Chandra)
J. Inst. Math. Jussieu 2 (2003) 235–333
88
Weissman, Martin H.
Metaplectic tori over local fields
Pacific J. Math. 241 (2009) 169–200
Math Reviews MR2485462
89
Adams, Jeffrey and Barbasch, Dan
Genuine representations of the metaplectic group
Compositio Math. 113 (1998) 23–66
Math Reviews MR1638210 (99h:22013)
90
Adams, Jeffrey and Barbasch, Dan and Paul, A. and Trapa, P. and Vogan, David A. Jr.
Unitary Shimura correspondences for split real groups
J. Amer. Math. Soc. 20 (2007) 701–751
Math Reviews MR2291917
91
Adams, Jeffrey
Lifting of characters on orthogonal and metaplectic groups
Duke Math. J. 92 (1998) 129–178
Math Reviews MR1609329
92
Balmer, Paul
Witt groups
in Handbook of K-theory. Vol. 1, 2
(2005) 539–576
Math Reviews MR2181829
93
Barbasch, Dan and Moy, Allen
A new proof of the Howe conjecture
J. Amer. Math. Soc. 13 (2000) 639–650
Math Reviews MR1758757
94
Chaudouard, P.-H. and Laumon, G.
Le lemme fondamental pondéré. I : Constructions géométriques
ArXiv e-prints (2009)
95
Chaudouard, P.-H. and Laumon, G.
Le lemme fondamental pondéré. II. Énoncés cohomologiques
ArXiv e-prints (2009)
96
Howard, Tatiana
Lifting of Characters on p-adic Orthogonal and Metaplectic Groups
Thèse, University of Maryland (2007)
97
Howe, R.
-series and invariant theory
in Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1
Proc. Sympos. Pure Math., XXXIII (1979) 275–285
Math Reviews MR546602
98
Hales, Thomas C.
A simple definition of transfer factors for unramified groups
in Representation theory of groups and algebras
Contemp. Math. 145 (1993) 109–134
Math Reviews MR1216184
99
Hales, Thomas C.
Unipotent representations and unipotent classes in SL(n)
Amer. J. Math. 115 (1993) 1347–1383
Math Reviews MR1254737
100
Hales, Thomas C.
On the fundamental lemma for standard endoscopy: reduction to unit elements
Canad. J. Math. 47 (1995) 974–994
Math Reviews MR1350645
101
Knus, Max-Albert
Quadratic and Hermitian forms over rings
Springer, 1991
Math Reviews MR1096299
102
Kottwitz, Robert E.
Rational conjugacy classes in reductive groups
Duke Math. J. 49 (1982) 785–806
Math Reviews MR683003
103
Kottwitz, Robert E.
Stable trace formula: elliptic singular terms
Math. Ann. 275 (1986) 365–399
Math Reviews MR858284
104
Kottwitz, Robert E. and Shelstad, Diana
Foundations of twisted endoscopy
Astérisque 255 (1999) 190
Math Reviews MR1687096
105
Labesse, Jean-Pierre
Cohomologie, stabilisation et changement de base
Astérisque 257 (1999) 161 Appendix A by Laurent Clozel and Labesse, and Appendix B by Lawrence Breen
Math Reviews MR1695940
106
Lam, T. Y.
Introduction to quadratic forms over fields
Amer. Math. Soc., 2005
Math Reviews MR2104929
107
Li, Wen-Wei
Transfert d'intégrales orbitales pour le groupe métaplectique
(2009) arXiv:0906.4053
108
Li, Wen-Wei
Le lemme fondamental pondéré pour le groupe métaplectique
(2010) arXiv:1006.4780
109
Li, Wen-Wei
La formule des traces pour les revêtements de groupes réductifs connexes. II. Analyse harmonique locale
(2011) arXiv:1107.1865
110
Lion, Gérard and Perrin, Patrice
Extension des représentations de groupes unipotents p-adiques. Calculs d'obstructions
in Noncommutative harmonic analysis and Lie groups (Marseille, 1980)
Lecture Notes in Math. 880 (1981) 337–356
Math Reviews MR644839
111
Langlands, Robert P. and Shelstad, Diana
On the definition of transfer factors
Math. Ann. 278 (1987) 219–271
Math Reviews MR909227
112
Langlands, Robert P. and Shelstad, Diana
Descent for transfer factors
in The Grothendieck Festschrift, Vol.II
Progr. Math. 87 (1990) 485–563
Math Reviews MR1106907
113
114
Lion, Gérard and Vergne, Michèle
The Weil representation, Maslov index and theta series
Birkhäuser, 1980
Math Reviews MR573448
115
Maktouf, Khemais
Le caractère de la représentation métaplectique et la formule du caractère pour certaines représentations d'un groupe de Lie presque algébrique sur un corps p-adique
J. Funct. Anal. 164 (1999) 249–339
Math Reviews MR1695563
116
Mœglin, Colette and Vignéras, Marie-France and Waldspurger, Jean-Loup
Correspondances de Howe sur un corps p-adique
Springer, 1987
Math Reviews MR1041060
117
Ngô Bao Châu
Le lemme fondamental pour les algèbres de Lie
Publ. Math. I.H.É.S. 111 (2010) 1-169
118
Perrin, Patrice
Représentations de Schrödinger, indice de Maslov et groupe metaplectique
in Noncommutative harmonic analysis and Lie groups (Marseille, 1980)
Lecture Notes in Math. 880 (1981) 370–407
Math Reviews MR644841
119
Renard, David
Transfert d'intégrales orbitales entre Mp(2n,<b>R</b>) et SO(n+1,n)
Duke Math. J. 95 (1998) 425–450
Math Reviews MR1652025
120
Renard, David
Endoscopy for Mp(2n,<b>R</b>)
Amer. J. Math. 121 (1999) 1215–1243
Math Reviews MR1719818
121
Savin, Gordan
Local Shimura correspondence
Math. Ann. 280 (1988) 185–190
Math Reviews MR929534
122
Schultz, Jason
Lifting of Characters of SL_2(F) and SO_1,2(F) for F a Nonarchemidean Local Field
Thèse, University of Maryland (1998)
123
Shelstad, Diana
Characters and inner forms of a quasi-split group over <b>R</b>
Compositio Math. 39 (1979) 11–45
Math Reviews MR539000
124
Shelstad, Diana
Tempered endoscopy for real groups. I. Geometric transfer with canonical factors
in Representation theory of real reductive Lie groups
Contemp. Math. 472 (2008) 215–246
Math Reviews MR2454336
125
Sliman, Mohamed Hachmi
Théorie de Mackey pour les groupes adéliques
Astérisque 115 (1984) 151
Math Reviews MR753874
126
Thomas, Teruji
The Maslov index as a quadratic space
Math. Res. Lett. 13 (2006) 985–999 arXiv:math/0505561v3
Math Reviews MR2280792
127
Thomas, Teruji
The character of the Weil representation
J. Lond. Math. Soc. 77 (2008) 221–239
Math Reviews MR2389926
128
129
Waldspurger, Jean-Loup
Intégrales orbitales nilpotentes et endoscopie pour les groupes classiques non ramifiés
Astérisque 269 (2001) 449
130
Waldspurger, Jean-Loup
L'endoscopie tordue n'est pas si tordue
Mem. Amer. Math. Soc. 194 (2008) 261
131
Waldspurger, Jean-Loup
À propos du lemme fondamental pondéré tordu
Math. Ann. 343 (2009) 103–174
Math Reviews MR2448443
132
Waldspurger, Jean-Loup
Endoscopie et changement de caractéristique: intégrales orbitales pondérées
Ann. Inst. Fourier (Grenoble) 59 (2009) 1753–1818
Math Reviews MR2573190
133
134
Waldspurger, Jean-Loup
Les facteurs de transfert pour les groupes classiques: un formulaire
(2009)
135
Weil, André
Sur certains groupes d'opérateurs unitaires
Acta Math. 111 (1964) 143–211
Math Reviews MR0165033