Catalogue et commandes en ligne (paiement sécurisé, VISA ou MASTERCARD uniquement)

Revues disponibles par abonnement

Annales scientifiques de l'ENS

Astérisque

Bulletin de la SMF

Mémoires de la SMF

Revue d'Histoire des Mathématiques

Gazette des Mathématiciens

Séries de livres

Astérisque

Cours Spécialisés

Documents Mathématiques

Mémoires de la SMF

Panoramas et Synthèses

Séminaires et Congrès

Série Chaire Jean Morlet

SMF/AMS Texts and Monographs

La Série T

Fascicules « Journée Annuelle »

Autres livres

Donald E. Knuth - traductions françaises

Rééditions du Séminaire Nicolas Bourbaki

Rééditions des Œuvres de Jean Leray

Revue de l'Institut Elie Cartan

Editions électroniques

Annales scientifiques de l'ENS

Bulletin de la SMF

Revue d'Histoire des Mathématiques

Séminaires et Congrès

Plus d'information / Abonnement

Publications grand public

L'explosion des mathématiques (smf.emath.fr)

Mathématiques L'explosion continue (smf.emath.fr)

Zoom sur les métiers des maths (smf.emath.fr)

Zoom sur les métiers des mathématiques et de l'informatique (smf.emath.fr)

Où en sont les mathématiques ?

La Série T

Pour les auteurs

Soumission des manuscrits

Formats et documentation

Plus d'info

Liste de diffusion électronique (smf.emath.fr)

Information pour les libraires et diffuseurs (smf.emath.fr)

Publications de la SMF
fr en
Votre numéro IP : 23.23.50.247
Accès aux édit. élec. : SémCong

Annales scientifiques de l'ENS

Présentation de la publication

Parutions

Dernières parutions

Comité de rédaction / Secrétariat

Série 4 :
Série 3 :
Série 2 :
Série 1 :

Faire une recherche


Catalogue & commande

Annales scientifiques de l'ENS - Parutions - série 4, 45 (2012)

Parutions < série 4, 45

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE, série 4 45, fascicule 2 (2012)

Meysam Nassiri, Enrique R. Pujals
Robust Transitivity in Hamiltonian Dynamics
Annales scientifiques de l'ENS 45, fascicule 2 (2012), 191-239

Télécharger cet article : Fichier PDF
Acheter l'ouvrage

Résumé :
Transitivité robuste en dynamique hamiltonienne
Un objectif de ce travail est d'étudier la dynamique sur le complémentaire des tores KAM en mettant l'accent sur la transitivité robuste non locale. Nous introduisons les ensembles ouverts de difféomorphismes symplectiques et de systèmes hamiltoniens, présentant de grands ensembles robustement transitifs. L'adhérence de ces ensembles ouverts (en topologie C^r, r=1, 2, , ) contient un grand nombre de systèmes, y compris les systèmes intégrables a priori instables. En outre, l'existence de mesures ergodiques avec un grand support est obtenue pour l'ensemble de ces systèmes. L'ingrédient principal des preuves est la combinaison de l'étude de systèmes itérés de fonctions de dynamique minimale et d'un nouvel outil de la dynamique hamiltonienne que nous appelons mélangeurs symplectiques.

Mots-clefs : Mélangeurs symplectiques, transitivité robuste, dynamique hamiltonienne, problème d'instabilité

Abstract:
A goal of this work is to study the dynamics in the complement of KAM tori with focus on non-local robust transitivity. We introduce C^r open sets (r=1, 2, , ) of symplectic diffeomorphisms and Hamiltonian systems, exhibiting large robustly transitive sets. We show that the C^ closure of such open sets contains a variety of systems, including so-called a priori unstable integrable systems. In addition, the existence of ergodic measures with large support is obtained for all those systems. A main ingredient of the proof is a combination of studying minimal dynamics of symplectic iterated function systems and a new tool in Hamiltonian dynamics which we call ``symplectic blender''.

Keywords: Symplectic blender, robust transitivity, Hamiltonian dynamics, instability problem

Class. math. : 37D30, 37J40; 53Dxx, 70Fxx, 70Hxx


ISSN : 0012-9593
Publié avec le concours de : Centre National de la Recherche Scientifique

Bibliographie:

1
Abdenur, Flavio and Bonatti, Christian and Crovisier, Sylvain
Nonuniform hyperbolicity for C1-generic diffeomorphisms
Israel J. Math. 183 (2011) 1–60
Math Reviews MR2811152
2
Arnaud, Marie-Claude and Bonatti, Christian and Crovisier, Sylvain
Dynamiques symplectiques génériques
Ergodic Theory Dynam. Systems 25 (2005) 1401–1436
Math Reviews MR2173426 (2006k:37146)
Zentralblatt 1084.37017
3
Arnold, Ludwig
Random dynamical systems
Springer, 1998
Math Reviews MR1723992 (2000m:37087)
Zentralblatt 1044.37516
4
Arnold, V. I.
Small denominators and problems of stability of motion in classical and celestial mechanics
Uspehi Mat. Nauk 18 (1963) 91–192
Math Reviews MR0170705 (30 \#943)
5
Arnold, V. I.
Instability of dynamical systems with many degrees of freedom
Dokl. Akad. Nauk SSSR 156 (1964) 9–12
Math Reviews MR0163026 (29 \#329)
6
Arnold, Vladimir I. and Kozlov, Valery V. and Neishtadt, Anatoly I.
Mathematical aspects of classical and celestial mechanics
Springer, 2006
Math Reviews MR2269239 (2008a:70001)
Zentralblatt 1105.70002
7
Berglund, Nils and Gentz, Barbara
Noise-induced phenomena in slow-fast dynamical systems
Springer London Ltd., 2006
Math Reviews MR2197663 (2007b:37115)
Zentralblatt 1098.37049
8
Bernstein, David and Katok, Anatole
Birkhoff periodic orbits for small perturbations of completely integrable Hamiltonian systems with convex Hamiltonians
Invent. Math. 88 (1987) 225–241
Math Reviews MR880950 (88i:58048)
9
Bonatti, Christian and Crovisier, Sylvain
Récurrence et généricité
Invent. Math. 158 (2004) 33–104
Math Reviews MR2090361 (2007b:37036)
Zentralblatt 1071.37015
10
Bonatti, Christian and Díaz, Lorenzo J.
Persistent nonhyperbolic transitive diffeomorphisms
Ann. of Math. 143 (1996) 357–396
Math Reviews MR1381990 (97d:58122)
Zentralblatt 852.58066
11
Bonatti, Christian and Díaz, Lorenzo J.
Robust heterodimensional cycles and C1-generic dynamics
J. Inst. Math. Jussieu 7 (2008) 469–525
Math Reviews MR2427422 (2009f:37020)
12
Bonatti, Christian and Díaz, Lorenzo J. and Pujals, Enrique R.
A C1-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources
Ann. of Math. 158 (2003) 355–418
Math Reviews MR2018925 (2007k:37032)
13
Bonatti, Christian and Díaz, Lorenzo J. and Viana, Marcelo
Dynamics beyond uniform hyperbolicity
Springer, 2004
14
Burns, Keith and Wilkinson, Amie
On the ergodicity of partially hyperbolic systems
Ann. of Math. 171 (2010) 451–489
Math Reviews MR2630044 (2011g:37075)
Zentralblatt 1196.37057
15
Cheng, Chong-Qing and Yan, Jun
Existence of diffusion orbits in a priori unstable Hamiltonian systems
J. Differential Geom. 67 (2004) 457–517
Math Reviews MR2153027 (2006d:37110)
Zentralblatt 1098.37055
16
Delshams, Amadeu and Gidea, Marian and de la Llave, Rafael and Seara, Tere M.
Geometric approaches to the problem of instability in Hamiltonian systems. An informal presentation
in Hamiltonian dynamical systems and applications
NATO Sci. Peace Secur. Ser. B Phys. Biophys. (2008) 285–336
Math Reviews MR2446259 (2009k:37132)
17
Delshams, Amadeu and de la Llave, Rafael and Seara, Tere M.
A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristics and rigorous verification on a model
Mem. Amer. Math. Soc. 179 (2006)
Math Reviews MR2184276 (2009m:37170)
18
Delshams, Amadeu and de la Llave, Rafael and Seara, Tere M.
Orbits of unbounded energy in quasi-periodic perturbations of geodesic flows
Adv. Math. 202 (2006) 64–188
Math Reviews MR2218821 (2007a:37070)
Zentralblatt 1091.37018
19
Díaz, Lorenzo J. and Pujals, Enrique R. and Ures, Raúl
Partial hyperbolicity and robust transitivity
Acta Math. 183 (1999) 1–43
Math Reviews MR1719547 (2002a:37039)
Zentralblatt 987.37020
20
Douady, Raphaël
Stabilité ou instabilité des points fixes elliptiques
Ann. Sci. École Norm. Sup. 21 (1988) 1–46
Math Reviews MR944100 (89m:58113)
Zentralblatt 656.58020
21
Ghane, F. H. and Homburg, A. J. and Sarizadeh, A.
C1 robustly minimal iterated function systems
Stoch. Dyn. 10 (2010) 155–160
Math Reviews MR2604683 (2011h:37029)
22
Hirsch, M. W. and Pugh, Charles and Shub, Michael
Invariant manifolds
Springer, 1977
Math Reviews MR0501173 (58 \#18595)
Zentralblatt 355.58009
23
Horita, Vanderlei and Tahzibi, Ali
Partial hyperbolicity for symplectic diffeomorphisms
Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006) 641–661
Math Reviews MR2259610 (2007j:37047)
Zentralblatt 1130.37356
24
Kaloshin, Vadim and Levi, Mark
An example of Arnold diffusion for near-integrable Hamiltonians
Bull. Amer. Math. Soc. (N.S.) 45 (2008) 409–427
Math Reviews MR2402948 (2009d:37109)
Zentralblatt 1141.70009
25
Kaloshin, Vadim and Mather, John N. and Valdinoci, Enrico
Instability of resonant totally elliptic points of symplectic maps in dimension 4
Astérisque 297 (2004) 79–116
Math Reviews MR2135676 (2006a:37047)
Zentralblatt 1156.37313
26
Katok, Anatole
Lyapunov exponents, entropy and periodic orbits for diffeomorphisms
Publ. Math. I.H.É.S. 51 (1980) 137–173
Math Reviews MR573822 (81i:28022)
Zentralblatt 445.58015
27
Koropecki, Andres and Nassiri, Meysam
Transitivity of generic semigroups of area-preserving surface diffeomorphisms
Math. Z. 266 (2010) 707–718 ; 268 (2011), 601–604
Math Reviews MR2719428
Zentralblatt 1215.37019
28
Mañé, Ricardo
Contributions to the stability conjecture
Topology 17 (1978) 383–396
Math Reviews MR516217 (84b:58061)
Zentralblatt 405.58035
29
Mañé, Ricardo
Ergodic theory and differentiable dynamics
Springer, 1987
Math Reviews MR889254 (88c:58040)
Zentralblatt 616.28007
30
Marco, Jean-Pierre and Sauzin, David
Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems
Publ. Math. I.H.É.S. 96 (2002) 199–275
Math Reviews MR1986314 (2004m:37112)
Zentralblatt 1086.37031
31
Mather, John N.
Arnold diffusion. I. Announcement of results
Sovrem. Mat. Fundam. Napravl. 2 (2003) 116–130; English transl.in J. Math. Sci. 124 (2004), 5275–5289
Math Reviews MR2129140 (2005m:37142)
32
Moeckel, Richard
Generic drift on Cantor sets of annuli
in Celestial mechanics (Evanston, IL, 1999)
Contemp. Math. 292 (2002) 163–171
Math Reviews MR1884898 (2002m:37088)
Zentralblatt 1034.70012
33
Nassiri, Meysam
Robustly Transitive Sets in Nearly Integrable Hamiltonian Systems
Thèse, IMPA (2006)
34
Newhouse, Sheldon E.
Quasi-elliptic periodic points in conservative dynamical systems
Amer. J. Math. 99 (1977) 1061–1087
Math Reviews MR0455049 (56 \#13290)
Zentralblatt 379.58011
35
Pugh, Charles and Shub, Michael
Stable ergodicity
Bull. Amer. Math. Soc. (N.S.) 41 (2004) 1–41
Math Reviews MR2015448 (2005f:37011)
Zentralblatt pre02041036
36
Pujals, Enrique R. and Sambarino, Martin
Homoclinic bifurcations, dominated splitting, and robust transitivity
in Handbook of dynamical systems. Vol. 1B
(2006) 327–378
Math Reviews MR2186244 (2007d:37042)
Zentralblatt 1130.37354
37
Robinson, R. Clark
Generic properties of conservative systems I, II
Amer. J. Math. 92 (1970) 562–603, 897–906
Math Reviews MR0273640 (42 \#8517)
38
Saghin, Radu and Xia, Zhihong
Partial hyperbolicity or dense elliptic periodic points for C1-generic symplectic diffeomorphisms
Trans. Amer. Math. Soc. 358 (2006) 5119–5138
Math Reviews MR2231887 (2007d:37044)
39
Shub, Michael
Topologically transitive diffeomorphisms of T^4
in Symposium on Differential Equations and Dynamical Systems
Springer Lecture Notes 206 (1971) 39–40
40
Shub, Michael and Wilkinson, Amie
Stably ergodic approximation: two examples
Ergodic Theory Dynam. Systems 20 (2000) 875–893
Math Reviews MR1764933 (2001d:37032)
Zentralblatt 970.37022
41
Xia, Zhihong
Arnold diffusion: a variational construction
in Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998)
Doc. Math. Extra Vol. II (1998) 867–877
Math Reviews MR1648133 (99g:58112)
Zentralblatt 910.58015
42
Zehnder, E.
Homoclinic points near elliptic fixed points
Comm. Pure Appl. Math. 26 (1973) 131–182
Math Reviews MR0345134 (49 \#9873)
Zentralblatt 261.58002